25 research outputs found

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Area-V5 Of The Human Brain:Evidence From A Combined Study Using Positron Emission Tomography And Magnetic-Resonance-Imaging

    No full text
    In pursuing our work on the organization of human visual cortex, we wanted to specify more accurately the position of the visual motion area (area V5) in relation to the sulcal and gyral pattern of the cerebral cortex. We also wanted to determine the intersubject variation of area V5 in terms of position and extent of blood flow change in it, in response to the same task. We therefore used positron emission tomography (PET) to determine the foci of relative cerebral blood flow increases produced when subjects viewed a moving checkerboard pattern, compared to viewing the same pattern when it was stationary. We coregistered the PET images from each subject with images of the same brain obtained by magnetic resonance imaging, thus relating the position of V5 in all 24 hemispheres examined to the individual gyral configuration of the same brains. This approach also enabled us to examine the extent to which results obtained by pooling the PET data from a small group of individuals (e.g., six), chosen at random, would be representative of a much larger sample in determining the mean location of V5 after transformation into Talairach coordinates. After stereotaxic transformation of each individual brain, we found that the position of area V5 can vary by as much as 27 mm in the left hemisphere and 18 mm in the right for the pixel with the highest significance for blood flow change. There is also an intersubject variability in blood flow change within it in response to the same visual task. V5 nevertheless bears a consistent relationship, within each brain, to the sulcal pattern of the occipital lobe. It is situated ventrolaterally, just posterior to the meeting point of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus. In position it corresponds almost precisely with Flechsig's Feld 16, one of the areas that he found to be myelinated at birth. © 1993 Oxford University Press

    Mapping motor representations with positron emission tomography.

    No full text
    International audienceBrain activity was mapped in normal subjects during passive observation of the movements of an 'alien' hand and while imagining grasping objects with their own hand. None of the tasks required actual movement. Shifting from one mental task to the other greatly changed the pattern of brain activation. During observation of hand movements, activation was mainly found in visual cortical areas, but also in subcortical areas involved in motor behaviour, such as the basal ganglia and the cerebellum. During motor imagery, cortical and subcortical areas related to motor preparation and programming were strongly activated. These data support the notion that motor learning during observation of movements and mental practice involves rehearsal of neural pathways related to cognitive stages of motor control
    corecore