680 research outputs found

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Sharp Quantum vs. Classical Query Complexity Separations

    Full text link
    We obtain the strongest separation between quantum and classical query complexity known to date -- specifically, we define a black-box problem that requires exponentially many queries in the classical bounded-error case, but can be solved exactly in the quantum case with a single query (and a polynomial number of auxiliary operations). The problem is simple to define and the quantum algorithm solving it is also simple when described in terms of certain quantum Fourier transforms (QFTs) that have natural properties with respect to the algebraic structures of finite fields. These QFTs may be of independent interest, and we also investigate generalizations of them to noncommutative finite rings.Comment: 13 pages, change in title, improvements in presentation, and minor corrections. To appear in Algorithmic

    A universally programmable Quantum Cellular Automaton

    Full text link
    We discuss the role of classical control in the context of reversible quantum cellular automata. Employing the structure theorem for quantum cellular automata, we give a general construction scheme to turn an arbitrary cellular automaton with external classical control into an autonomous one, thereby proving the computational equivalence of these two models. We use this technique to construct a universally programmable cellular automaton on a one-dimensional lattice with single cell dimension 12.Comment: 4 pages, 4 figures, minor changes in introduction, fixed typos, accepted for publication in Physical Review Letter

    Characterization of distillability of entanglement in terms of positive maps

    Full text link
    A necessary and sufficient condition for 1-distillability is formulated in terms of decomposable positive maps. As an application we provide insight into why all states violating the reduction criterion map are distillable and demonstrate how to construct such maps in a systematic way. We establish a connection between a number of existing results, which leads to an elementary proof for the characterisation of distillability in terms of 2-positive maps.Comment: 4 pages, revtex4. Published revised version, title changed, expanded discussion, main result unchange

    Quantum computation via translation-invariant operations on a chain of qubits

    Get PDF
    A scheme of universal quantum computation on a chain of qubits is described that does not require local control. All the required operations, an Ising-type interaction and spatially uniform simultaneous one-qubit gates, are translation-invariant.Comment: Comment after Eq. (2) inserted, journal versio

    Adaptive versus non-adaptive strategies for quantum channel discrimination

    Full text link
    We provide a simple example that illustrates the advantage of adaptive over non-adaptive strategies for quantum channel discrimination. In particular, we give a pair of entanglement-breaking channels that can be perfectly discriminated by means of an adaptive strategy that requires just two channel evaluations, but for which no non-adaptive strategy can give a perfect discrimination using any finite number of channel evaluations.Comment: 11 page

    New multiplicativity results for qubit maps

    Full text link
    Let Φ\Phi be a trace-preserving, positivity-preserving (but not necessarily completely positive) linear map on the algebra of complex 2×22 \times 2 matrices, and let Ω\Omega be any finite-dimensional completely positive map. For p=2p=2 and p≥4p \geq 4, we prove that the maximal pp-norm of the product map \Phi \ot \Omega is the product of the maximal pp-norms of Φ\Phi and Ω\Omega. Restricting Φ\Phi to the class of completely positive maps, this settles the multiplicativity question for all qubit channels in the range of values p≥4p \geq 4.Comment: 14 pages; original proof simplified by using Gorini and Sudarshan's classification of extreme affine maps on R^

    Robust randomized benchmarking of quantum processes

    Full text link
    We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.Comment: 4+ pages, 1 figure, and 1 tabl

    The Dynamical Additivity And The Strong Dynamical Additivity Of Quantum Operations

    Full text link
    In the paper, the dynamical additivity of bi-stochastic quantum operations is characterized and the strong dynamical additivity is obtained under some restrictions.Comment: 9 pages, LaTeX, change the order of name

    Single-shot discrimination of quantum unitary processes

    Full text link
    We formulate minimum-error and unambiguous discrimination problems for quantum processes in the language of process positive operator valued measures (PPOVM). In this framework we present the known solution for minimum-error discrimination of unitary channels. We derive a "fidelity-like" lower bound on the failure probability of the unambiguous discrimination of arbitrary quantum processes. This bound is saturated (in a certain range of apriori probabilities) in the case of unambiguous discrimination of unitary channels. Surprisingly, the optimal solution for both tasks is based on the optimization of the same quantity called completely bounded process fidelity.Comment: 11 pages, 1 figur
    • …
    corecore