818 research outputs found

    Pensions, Risk, and Global Systemically Important Financial Institutions

    Get PDF
    Following the 2007–2009 financial crisis, global policymakers enacted some of the most sweeping financial regulatory reforms in the past 70 years. Initially, policymakers focused on the banking system, but in recent years they have looked beyond banks for other sources of systemic risk. This chapter briefly describes systemic risk, how bank-oriented models and rules have influenced the thinking about systemic risk, and how this thinking has affected the subsequent regulatory focus on pension funds and asset management as sources of systemic risk. The chapter then examines some of the current theories of how asset management products could pose risks to the financial system

    Screening Arabidopsis accessions for alkaline stress tolerance

    Get PDF
    RESEARCH QUESTIONS 1. Will there be differences between Arabidopsis accessions for alkaline stress tolerance in potting mix growth conditions? 2. Will there be differences for fluorescent concentration between inside and outside roots in hydroponic system? 3. Will there be differences for fluorescent concentration between different Arabidopsis accessions in hydroponic system

    Screening Arabidopsis accessions for alkaline stress tolerance

    Get PDF
    RESEARCH QUESTIONS 1. Will there be differences between Arabidopsis accessions for alkaline stress tolerance in potting mix growth conditions? 2. Will there be differences for fluorescent concentration between inside and outside roots in hydroponic system? 3. Will there be differences for fluorescent concentration between different Arabidopsis accessions in hydroponic system

    Ethylene production, cluster root formation, and localization of iron(III) reducing capacity in Fe deficient squash roots

    Get PDF
    Dicots and non-graminaceous monocots have the ability to increase root iron(III) reducing capacity in response to iron (Fe) deficiency stress. In squash (Cucurbita pepo L.) seedlings, Fe(III) reducing capacity was quantified during early vegetative growth. When plants were grown in Fe-free solution, the Fe(III) reducing capacity was greatly elevated, reached peak activity on day 4, then declined through day 6. Root ethylene production exhibited a temporal pattern that closely matched that of Fe(III) reducing capacity through day 6. On the 7th day of Fe deficiency, cluster root morphology developed, which coincided with a sharp increase in the root Fe(III) reducing capacity, although ethylene production decreased. Localization of Fe(III) reducing capacity activity was observed during the onset of Fe deficiency and through the development of the root clusters. It was noted that localization shifted from an initial pattern which occurred along the main and primary lateral root axes, excluding the apex, to a final localization pattern in which the reductase appeared only on secondary laterals and cluster rootlets

    Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    Get PDF
    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots

    Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    Get PDF
    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots

    Vibration control of beams and plates with hybrid active-passive constrained layer damping treatments

    No full text
    The concept of hybrid active-passive constrained layer damping treatments, which consists of viscoelastic materials, piezoelectric materials and elastic constraining materials, was proposed in the 1990s in order to ameliorate problems of instability in traditional active control systems in the higher frequency range. In this paper, the performances of four types of hybrid active-passive constrained layer damping treatments are investigated for beam and plate applications. These types are Active Constrained Layer Damping (ACLD), Active-Passive Constrained Layer Damping (APCLD), Active Control/Passive Constrained Layer Damping (AC/PCLD) and Active Control/Passive Stand-Off Layer Damping (AC/PSOLD). The performances of each treatment are compared through simulation with numerical models using the Finite Element Method. Finally, control performances of all configurations for curved plates are discussed with measured Frequency Response Functions of each case

    Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress

    Get PDF
    Alkaline soils comprise 30% of the earth and have low plant-available iron (Fe) concentration, and can cause iron deficiency chlorosis (IDC). IDC causes soybean yield losses of $260 million annually. However, it is not known whether molecular responses to IDC are equivalent to responses to low iron supply. IDC tolerant and sensitive soybean lines provide a contrast to identify specific factors associated with IDC.We used RNA-seq to compare gene expression under combinations of normal pH (5.7) or alkaline pH (7.7, imposed by 2.5mM bicarbonate, or pH 8.2 imposed by 5mM bicarbonate) and normal (25μM) or low (1μM) iron conditions from roots of these lines. Thus, we were able to treat pH and Fe supply as separate variables. We also noted differential gene expression between IDC sensitive and tolerant genotypes in each condition. Classical iron uptake genes, including ferric-chelate reductase (FCR) and ferrous transporters, were upregulated by both Fe deficiency and alkaline stress, however, their gene products did not function well at alkaline pH. In addition, genes in the phenylpropanoid synthesis pathway were upregulated in both alkaline and low Fe conditions. These genes lead to the production of fluorescent root exudate (FluRE) compounds, such as coumarins. Fluorescence of nutrient solution increased with alkaline treatment, and was higher in the IDC tolerant line. Some of these genes also localized to previously identified QTL regions associated with IDC. We hypothesize that FluRE become essential at alkaline pH where the classical iron uptake system does not function well. This work could result in new strategies to screen for IDC tolerance, and provide breeding targets to improve crop alkaline stress tolerance

    Transcriptomic and physiological characterization of the \u3ci\u3efefe\u3c/i\u3e mutant of melon (\u3ci\u3eCucumis melo\u3c/i\u3e) reveals new aspects of iron-copper crosstalk

    Get PDF
    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe-regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu-deficient plants was independent of the normal Fe-uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe-regulated, and one was Cu-regulated. Simultaneous Fe and Cu deficiency synergistically up-regulated Fe-uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe-Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, and thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants
    • …
    corecore