45 research outputs found

    STELLAR: fast and exact local alignments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches.</p> <p>Results</p> <p>We present here the local pairwise aligner STELLAR that has full sensitivity for <it>ε</it>-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments.</p> <p>Conclusions</p> <p>STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at <url>http://www.seqan.de/projects/stellar</url>. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at <url>http://www.seqan.de</url>.</p
    corecore