62 research outputs found

    Color-Pattern Evolution in Response to Environmental Stress in Butterflies

    Get PDF
    It is generally accepted that butterfly wing color-patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color-patterns may be produced physiologically in response to environmental stress, and they may lack significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation are discussed. First, a certain modified color-pattern of Vanessa indica induced by temperature treatments resembles the natural color-patterns of its closely related species of the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response. This modified pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color-patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color-patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait

    Ingestion of radioactively contaminated diets for two generations in the pale grass blue butterfly

    Get PDF
    Background: The release of radioactive materials due to the Fukushima nuclear accident has raised concern regarding the biological impacts of ingesting radioactively contaminated diets on organisms. We previously performed an internal exposure experiment in which contaminated leaves collected from polluted areas were fed to larvae of the pale grass blue butterfly, Zizeeria maha, from Okinawa, which is one of the least polluted localities in Japan. Using the same experimental system, in the present study, we further examined the effects of low-level-contaminated diets on this butterfly. Leaves were collected from two localities in Tohoku (Motomiya (161 Bq/kg) and Koriyama (117 Bq/kg)); two in Kanto (Kashiwa (47.6 Bq/kg) and Musashino (6.4 Bq/kg)); one in Tokai (Atami (2.5 Bq/kg)); and from Okinawa (0.2 Bq/kg). In addition to the effects on the first generation, we examined the possible transgenerational effects of the diets on the next generation.Results: In the first generation, the Tohoku groups showed higher rates of mortality and abnormalities and a smaller forewing size than the Okinawa group. The mortality rates were largely dependent on the ingested dose of caesium. The survival rates of the Kanto-Tokai groups were greater than 80%, but the rates in the Tohoku groups were much lower. In the next generation, the survival rates in the Tohoku groups were below 20%, whereas those of the Okinawa groups were above 70%. The survival rates in the second generation were independent of the locality of the leaves ingested by the first generation, indicating that the diet in the second generation was the determinant of their survival. Moreover, a smaller forewing size was observed in the Tohoku groups in the second generation. However, the forewing size was inversely correlated with the cumulative caesium dose ingested throughout the first and second generations, indicating that the diet in the first generation also influenced the forewing size of the second generation.Conclusions: Biological effects are detectable under a low ingested dose of radioactivity from a contaminated diet. The effects are transgenerational but can be overcome by ingesting a non-contaminated diet, suggesting that at least some of the observed effects are attributable to non-genetic physiological changes

    Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    No full text
    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns

    Metabolomic Response of the Creeping Wood Sorrel Oxalis corniculata to Low-Dose Radiation Exposure from Fukushima’s Contaminated Soil

    No full text
    The biological consequences of the Fukushima nuclear accident have been intensively studied using the pale grass blue butterfly Zizeeria maha and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed metabolomic analyses of Oxalis leaves from Okinawa to examine the plant metabolites that were upregulated or downregulated in response to low-dose radiation exposure from Fukushima’s contaminated soil. The cumulative dose of radiation to the plants was 5.7 mGy (34 μGy/h for 7 days). The GC-MS analysis revealed a systematic tendency of downregulation among the metabolites, some of which were annotated as caproic acid, nonanoic acid, azelaic acid, and oleic acid. Others were annotated as fructose, glucose, and citric acid, involved in the carbohydrate metabolic pathways. Notably, the peak annotated as lauric acid was upregulated. In contrast, the LC-MS analysis detected many upregulated metabolites, some of which were annotated as either antioxidants or stress-related chemicals involved in defense pathways. Among them, only three metabolite peaks had a single annotation, one of which was alfuzosin, an antagonist of the α1-adrenergic receptor. We conclude that this Oxalis plant responded metabolically to low-dose radiation exposure from Fukushima’s contaminated soil, which may mediate the ecological “field effects” of the developmental deterioration of butterflies in Fukushima

    Metabolomic Profiles of the Creeping Wood Sorrel <i>Oxalis corniculata</i> in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites

    No full text
    The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR 1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant

    3D structure of the underside of a <i>J</i>. <i>orithya</i> pupal case at a focal spot.

    No full text
    <p><b>(a)</b> An image of a pupal case upside down at a focal spot. <b>(b)</b> An obliquely positioned view. <b>(c)</b> A side view.</p
    corecore