5 research outputs found
Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance
The alarming growth of the antibiotic-resistant superbugs
methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant
Enterococcus (VRE) is driving the development of new technologies to
investigate antibiotics and their modes of action. We report the label-free
detection of vancomycin binding to bacterial cell wall precursor analogues
(mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically
relevant concentrations in blood serum. Differential measurements quantified
binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide
analogues. Moreover, by systematically modifying the mucopeptide density we
gain new insights into the origin of surface stress. We propose that stress is
a product of a local chemical binding factor and a geometrical factor
describing the mechanical connectivity of regions affected by local binding in
terms of a percolation process. Our findings place BioMEMS devices in a new
class of percolative systems. The percolation concept will underpin the design
of devices and coatings to significantly lower the drug detection limit and may
also impact on our understanding of antibiotic drug action in bacteria.Comment: Comments: This paper consists of the main article (6 pages, 5
figures) plus Supplemental Material (6 pages, 3 figures). More details are
available at http://www.london-nano.co
In-Plane Mechanochemistry at Model Biolodgical Interfaces
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Nanomechanics of Drug-target Interactions and Antibacterial Resistance Detection
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity(1-5). The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions. Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures(1,6,7). We developed a new model(1) which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (K(d)) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections