148 research outputs found

    Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Get PDF
    This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L) and fern (Dryopteris filix-max CL. Schoff) plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested

    Combined chemotherapy with carboplatin plus irinotecan showed favorable efficacy in a patient with relapsed small cell carcinoma of the prostate complicated with meningeal carcinomatosis

    Get PDF
    金沢大学附属病院がん高度先進治療センター金沢大学がん研究所分子標的がん医療研究開発センターWe report the case of a 65-year-old man with recurrent prostate cancer who presented with meningeal carcinomatosis. In September 2007, he had been diagnosed with mixed type small cell carcinoma and adenocarcinoma at clinical stage T4N1M1 (primary prostate tumor with multiple bone, liver, and lymph node metastases) and hormonal therapy had been administered. Following an increase in the level of pro-gastrin-releasing peptide (ProGRP), combined chemotherapy with cisplatin plus etoposide was implemented and showed efficacy in targeting the small cell carcinoma. In March 2008, he presented with signs of meningeal irritation; his condition deteriorated quickly and multiple brain metastases were confirmed by magnetic resonance imaging (MRI). A sample of cerebrospinal fluid collected by lumbar puncture showed cancer cells and an elevated level of ProGRP. Small cell carcinoma of the prostate complicated with meningeal carcinomatosis was diagnosed. A different chemotherapy regimen was then administered, consisting of a combination of carboplatin plus irinotecan, which is one of the most common first-line treatments for extensive-stage small cell lung carcinoma. From day 20 after the initiation of this therapy, he gradually recovered from the signs of meningeal irritation, and brain MRI showed nearly normal findings; also, the serum level of ProGRP was reduced. In conclusion, we report the efficacy of combined treatment with carboplatin plus irinotecan for small cell carcinoma of the prostate complicated with meningeal carcinomatosis. Because this clinical condition is extremely rare, a gold standard treatment has yet to be established. © 2009 Japan Society of Clinical Oncology

    Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation

    Get PDF
    BACKGROUND CONTEXT: Therapeutic devices for spinal disorders, such as spinal fusion cages, must be able to facilitate the maintenance and rapid recovery of spinal function. Therefore, it would be advantageous that future spinal fusion cages facilitate rapid recovery of spinal function without secondary surgery to harvest autologous bone. PURPOSE: This study investigated a novel spinal cage configuration that achieves in vivo mechanical integrity as a devise/bone complex by inducing bone that mimicked the sound trabecular bone, hierarchically and anisotropically structured trabeculae strengthened with a preferentially oriented extracellular matrix. STUDY DESIGN/SETTINGS: In vivo animal study. METHODS: A cage possessing an anisotropic through-pore with a grooved substrate, that we termed “honeycomb tree structure,” was designed for guiding bone matrix orientation; it was manufactured using a laser beam powder bed fusion method through an additive manufacturing processes. The newly designed cages were implanted into sheep vertebral bodies for 8 and 16 weeks. An autologous bone was not installed in the newly designed cage. A pull-out test was performed to evaluate the mechanical integrity of the cage/bone interface. Additionally, the preferential orientation of bone matrix consisting of collagen and apatite was determined. RESULTS: The cage/host bone interface strength assessed by the maximum pull-out load for the novel cage without an autologous bone graft (3360±411 N) was significantly higher than that for the conventional cage using autologous bone (903±188 N) after only 8 weeks post-implantation. CONCLUSIONS: These results highlight the potential of this novel cage to achieve functional fusion between the cage and host bone. Our study provides insight into the design of highly functional spinal devices based on the anisotropic nature of bone. CLINICAL SIGNIFICANCE: The sheep spine is similar to the human spine in its stress condition and trabecular bone architecture and is widely recognized as a useful model for the human spine. The present design may be useful as a new spinal device for humans.Ishimoto T., Kobayashi Y., Takahata M., et al. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation. Spine Journal, 22, 10, 1742. https://doi.org/10.1016/j.spinee.2022.05.006

    Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft

    Get PDF
    BACKGROUND CONTEXT: Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. PURPOSE: We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. STUDY DESIGN: This was an in vivo animal study. METHODS: Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. RESULTS: The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. CONCLUSIONS: The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. CLINICAL SIGNIFICANCE: Our results provide a foundation for designing future spacers for interbody fusion in human.Matsugaki A., Ito M., Kobayashi Y., et al. Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft. Spine Journal 23, 609 (2023); https://doi.org/10.1016/j.spinee.2022.12.011

    Residual neutron-induced radionuclides in a soil sample collected in the vicinity of the criticality accident site in Tokai-mura, Japan: A progress report

    Get PDF
    金沢大学理学部Residual neutron-induced radionuclides were measured in a soil sample collected in the vicinity of the location where a criticality accident occurred (in Tokai-mura, from 30 September to 1 October, 1999). Concentrations of 24Na,140La,122Sb,59Fe,124Sb,46Sc,65Zn,134Cs and 60Co in the soil sample were determined by γ-ray spectrometry, and neutron activation analysis was carried out for selected target elements in the sample. Tentative estimates of the apparent thermal and epithermal neutron fluences which reached the sample were obtained through combined analyses of 59Fe/58Fe,124Sb/123Sb,46Sc/45Sc,65Zn/64Zn,134Cs/133Cs and 60Co/59Co. (C) 2000 Elsevier Science Ltd

    AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells

    Get PDF
    A novel EGFR-tyrosine kinase inhibitor (TKI), osimertinib, has marked efficacy in patients with EGFR-mutated lung cancer. However, some patients show intrinsic resistance and an insufficient response to osimertinib. This study showed that osimertinib stimulated AXL by inhibiting a negative feedback loop. Activated AXL was associated with EGFR and HER3 in maintaining cell survival and inducing the emergence of cells tolerant to osimertinib. AXL inhibition reduced the viability of EGFR-mutated lung cancer cells overexpressing AXL that were exposed to osimertinib. The addition of an AXL inhibitor during either the initial or tolerant phases reduced tumor size and delayed tumor re-growth compared to osimertinib alone. AXL was highly expressed in clinical specimens of EGFR-mutated lung cancers and its high expression was associated with a low response rate to EGFR-TKI. These results indicated pivotal roles for AXL and its inhibition in the intrinsic resistance to osimertinib and the emergence of osimertinib-tolerant cells
    corecore