30,824 research outputs found
Modulation of Superconducting Properties by Ferroelectric Polarization in Confined FE-S-FE Films
We show that the electric polarization at the interface with ultrathin
superconducting (S) films sandwiched between ferroelectric (FE) layers allows
achievement of substantially stronger modulation of inner carrier density and
superconducting transition temperature as compared to FE-S bilayers typically
used in superconducting FETs. We find that not only the larger penetration
depths but also the pairing symmetry should be responsible for the fact that
the electric field effect in high temperature superconductors is much stronger
than in conventional systems. Discussing the advantages of multilayers, we
propose a novel design concept for superconducting electric field-effect
transistors based on ferroelectric films.Comment: 5 pages RevTex4, 6 figure
Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation
A numerical scheme for solving the time-evolution of wave functions under the
time dependent Kohn-Sham equation has been developed. Since the effective
Hamiltonian depends on the wave functions, the wave functions and the effective
Hamiltonian should evolve consistently with each other. For this purpose, a
self-consistent loop is required at every time-step for solving the
time-evolution numerically, which is computationally expensive. However, in
this paper, we develop a different approach expressing a formal solution of the
TD-KS equation, and prove that it is possible to solve the TD-KS equation
efficiently and accurately by means of a simple numerical scheme without the
use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres
Entanglement Purification of Any Stabilizer State
We present a method for multipartite entanglement purification of any
stabilizer state shared by several parties. In our protocol each party measures
the stabilizer operators of a quantum error-correcting code on his or her
qubits. The parties exchange their measurement results, detect or correct
errors, and decode the desired purified state. We give sufficient conditions on
the stabilizer codes that may be used in this procedure and find that Steane's
seven-qubit code is the smallest error-correcting code sufficient to purify any
stabilizer state. An error-detecting code that encodes two qubits in six can
also be used to purify any stabilizer state. We further specify which classes
of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review
Quantum Effects in Small-Capacitance Single Josephson Junctions
We have measured the current-voltage (I-V) characteristics of
small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6
K), where the strength of the coupling between the single junction and the
electromagnetic environment was controlled with one-dimensional arrays of dc
SQUIDs. The single-junction I-V curve is sensitive to the impedance of the
environment, which can be tuned IN SITU. We have observed Coulomb blockade of
Cooper-pair tunneling and even a region of negative differential resistance,
when the zero-bias resistance R_0' of the SQUID arrays is much higher than the
quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance
is evidence of coherent single-Cooper-pair tunneling within the theory of
current-biased single Josephson junctions. Based on the theory, we have
calculated the I-V curves numerically in order to compare with the experimental
ones at R_0' >> R_K. The numerical calculation agrees with the experiments
qualitatively. We also discuss the R_0' dependence of the
single-Josephson-junction I-V curve in terms of the superconductor-insulator
transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio
Phase Diagram of Spinless Fermions on an Anisotropic Triangular Lattice at Half-filling
The strong coupling phase diagram of the spinless fermions on the anisotropic
triangular lattice at half-filling is presented. The geometry of inter-site
Coulomb interactions rules the phase diagram. Unconventional charge ordered
phases are detected which are the recently reported pinball liquid and the
striped chains. Both are induced by the quantum dynamics out of classical
disordered states and afford extremely correlated metallic states and the
particular domain wall-type of excitations, respectively. The disorder once
killed by the quantum effect revives at the finite temperature, which is
discussed in the terms of the organic -ET.Comment: 4pages 6figure
Connexin communication compartments and wound repair in epithelial tissue
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems
Mechanical cleaning of graphene
Contamination of graphene due to residues from nanofabrication often
introduces background doping and reduces charge carrier mobility. For samples
of high electronic quality, post-lithography cleaning treatments are therefore
needed. We report that mechanical cleaning based on contact mode AFM removes
residues and significantly improves the electronic properties. A mechanically
cleaned dual-gated bilayer graphene transistor with hBN dielectrics exhibited a
mobility of ~36,000 cm2/Vs at low temperature.Comment: 4 pages, 4 figure
Apparatus for timeâresolved measurements of acoustic birefringence in particle dispersions
An apparatus for timeâresolved measurements of the birefringence induced in a particle suspension by an acoustic wave pulse is described. Efficient acoustic coupling is obtained by operating near the transducer resonant frequency and by matching the acoustic impedances of the cell constituents. An almostâoverdamped acoustic configuration can alternatively be employed whenever a faster response is needed. Careful design of the optical setup and of the detection unit minimize diffraction and stressâbirefringence parasitic effects and yields a good responsivity at fairly low acoustic intensities. A test of the apparatus on a colloidal suspension of PTFE rodlike particles is presented and discussed
- âŠ