1,473 research outputs found

    Secret Key Agreement by Soft-decision of Signals in Gaussian Maurer's Model

    Full text link
    We consider the problem of secret key agreement in Gaussian Maurer's Model. In Gaussian Maurer's model, legitimate receivers, Alice and Bob, and a wire-tapper, Eve, receive signals randomly generated by a satellite through three independent memoryless Gaussian channels respectively. Then Alice and Bob generate a common secret key from their received signals. In this model, we propose a protocol for generating a common secret key by using the result of soft-decision of Alice and Bob's received signals. Then, we calculate a lower bound on the secret key rate in our proposed protocol. As a result of comparison with the protocol that only uses hard-decision, we found that the higher rate is obtained by using our protocol.Comment: 10 pages, 4 figures, to be appear in Proc. of 2008 IEEE International Symposium on Information Theory in Toronto, Canad

    Behavior of Hydroxyl Radicals on Water Ice at Low Temperatures

    Get PDF
    Because chemical reactions on/in cosmic ice dust grains covered by amorphous solid water (ASW) play important roles in generating a variety of molecules, many experimental and theoretical studies have focused on the chemical processes occurring on the ASW surface. In laboratory experiments, conventional spectroscopic and mass-spectrometric detection of stable products is generally employed to deduce reaction channels and mechanisms. However, despite their importance, the details of chemical reactions involving reactive species (i.e., free radicals) have not been clarified because of the absence of experimental methods for in situ detection of radicals. Because OH radicals can be easily produced in interstellar conditions by not only the photolysis and/or ion bombardments of H2O but also the reaction of H and O atoms, they are thought to be one of the most abundant radicals on ice dust. In this context, the development of a close monitoring method of OH radicals on the ASW surface may help to elucidate the chemical reactions occurring on the ASW surface.Comment: 25 pages, 9 figures; Accepted for publication in Acc. Chem. Re

    Penetration of Non-energetic Hydrogen Atoms into Amorphous Solid Water and their Reaction with Embedded Benzene and Naphthalene

    Full text link
    Chemical processes on the surface of icy grains play an important role in the chemical evolution in molecular clouds. In particular, reactions involving non-energetic hydrogen atoms accreted from the gaseous phase have been extensively studied. These reactions are believed to effectively proceed only on the surface of the icy grains; thus, molecules embedded in the ice mantle are not considered to react with hydrogen atoms. Recently, Tsuge et al. (2020) suggested that non-energetic hydrogen atoms can react with CO molecules even in ice mantles via diffusive hydrogenation. This investigation was extended to benzene and naphthalene molecules embedded in amorphous solid water (ASW) in the present study, which revealed that a portion of these molecules could be fully hydrogenated in astrophysical environments. The penetration depths of non-energetic hydrogen atoms into porous and non-porous ASW were determined using benzene molecules to be >50 and ~10 monolayers, respectively (1 monolayer ~ 0.3 nm).Comment: 30 pages, 4 figures, 1 table; accepted for publication by Ap

    Diffusive hydrogenation reactions of CO embedded in amorphous solid water at elevated temperatures ~70 K

    Get PDF
    The surface processes on interstellar dust grains have an important role in the chemical evolution in molecular clouds. Hydrogenation reactions on ice surfaces have been extensively investigated and are known to proceed at low temperatures mostly below 20 K. In contrast, information about the chemical processes of molecules within an ice mantle is lacking. In this work, we investigated diffusive hydrogenation reactions of carbon monoxide (CO) embedded in amorphous solid water (ASW) as a model case and discovered that the hydrogenation of CO efficiently proceeds to yield H2CO and CH3OH even above 20 K when CO is buried beneath ASW. The experimental results suggest that hydrogen atoms diffuse through the cracks of ASW and have a sufficient residence time to react with embedded CO. The hydrogenation reactions occurred even at temperatures up to ~70 K. Cracks collapse at elevated temperatures but the occurrence of hydrogenation reactions means that the cracks would not completely disappear and remain large enough for penetration by hydrogen atoms. Considering the hydrogen-atom fluence in the laboratory and molecular clouds, we suggest that the penetration of hydrogen and its reactions within the ice mantle occur in astrophysical environments. Unified Astronom

    Surface Diffusion of Carbon Atoms as a Driver of Interstellar Organic Chemistry

    Full text link
    Many interstellar complex organic molecules (COMs) are believed to be produced on the surfaces of icy grains at low temperatures. Atomic carbon is considered responsible for the skeletal evolution processes, such as C-C bond formation, via insertion or addition reactions. Before reactions, C atoms must diffuse on the surface to encounter reaction partners; therefore, information on their diffusion process is critically important for evaluating the role of C atoms in the formation of COMs. In situ detection of C atoms on ice was achieved by a combination of photostimulated desorption and resonance enhanced multiphoton ionization methods. We found that C atoms weakly bound to the ice surface diffused approximately above 30 K and produced C2 molecules. The activation energy for C-atom surface diffusion was experimentally determined to be 88 meV (1,020 K), indicating that the diffusive reaction of C atoms is activated at approximately 22 K on interstellar ice. The facile diffusion of C at T > 22 K atoms on interstellar ice opens a previously overlooked chemical regime where the increase in complexity of COMs as driven by C atoms. Carbon addition chemistry can be an alternative source of chemical complexity in translucent clouds and protoplanetary disks with crucial implications in our current understanding on the origin and evolution of organic chemistry in our Universe.Comment: 33 pages (main + SI), 14 figures, 1 tabl
    corecore