7,008 research outputs found

    Strong absorption and selective thermal emission from a mid-infrared metamaterial

    Full text link
    We demonstrate thin-film metamaterials with resonances in the mid-infrared wavelength range. Our structures are numerically modeled and experimentally characterized by reflection and angularly-resolved thermal emission spectroscopy. We demonstrate strong and controllable absorption resonances across the mid-infrared wavelength range. In addition, the polarized thermal emission from these samples is shown to be highly selective and largely independent of emission angles from normal to 45 degrees. Experimental results are compared to numerical models with excellent agreement. Such structures hold promise for large-area, low-cost metamaterial coatings for control of gray- or black-body thermal signatures, as well as for possible mid-IR sensing applications.Comment: The following article has been submitted to Appl. Phys. Lett. After it is published, it will be found at http://apl.aip.org/. 14 pages including 4 figure page

    Network Evolution Based on Centrality

    Full text link
    We study the evolution of networks when the creation and decay of links are based on the position of nodes in the network measured by their centrality. We show that the same network dynamics arises under various centrality measures, and solve analytically the network evolution. During the complete evolution, the network is characterized by nestedness: the neighbourhood of a node is contained in the neighbourhood of the nodes with larger degree. We find a discontinuous transition in the network density between hierarchical and homogeneous networks, depending on the rate of link decay. We also show that this evolution mechanism leads to double power-law degree distributions, with interrelated exponents.Comment: 6 pages, 3 figure

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Local modularity measure for network clusterizations

    Full text link
    Many complex networks have an underlying modular structure, i.e., structural subunits (communities or clusters) characterized by highly interconnected nodes. The modularity QQ has been introduced as a measure to assess the quality of clusterizations. QQ has a global view, while in many real-world networks clusters are linked mainly \emph{locally} among each other (\emph{local cluster-connectivity}). Here, we introduce a new measure, localized modularity LQLQ, which reflects local cluster structure. Optimization of QQ and LQLQ on the clusterization of two biological networks shows that the localized modularity identifies more cohesive clusters, yielding a complementary view of higher granularity.Comment: 5 pages, 4 figures, RevTex4; Changed conten

    A dual modelling of evolving political opinion networks

    Full text link
    We present the result of a dual modeling of opinion network. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two sub-networks form a global network which can be either isolated from or dependent on the external influence. Basically, the evolution of the agent network includes link adding and deleting, the opinion changes influenced by social validation, the political climate, the attractivity of the parties and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties which are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position and of attractivity, taken into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agents over a quasi-stable and fluctuating stationary number of remaining parties. Empirical study on the lifetime distribution of numerous parties and vote results is carried out to verify numerical results

    Centrality scaling in large networks

    Full text link
    Betweenness centrality lies at the core of both transport and structural vulnerability properties of complex networks, however, it is computationally costly, and its measurement for networks with millions of nodes is near impossible. By introducing a multiscale decomposition of shortest paths, we show that the contributions to betweenness coming from geodesics not longer than L obey a characteristic scaling vs L, which can be used to predict the distribution of the full centralities. The method is also illustrated on a real-world social network of 5.5*10^6 nodes and 2.7*10^7 links

    Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    Full text link
    Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly modulate FRB amplitudes for a wide range of distances, including the ∼\sim Gpc distance of the repeater FRB121102. To produce caustics, the lens' dispersion-measure depth (DMℓ{\rm DM}_{\ell}), scale size (aa), and distance from the source (dsld_{\rm sl}) must satisfy DMℓdsl/a2≳0.65 pc2 AU−2 cm−3{\rm DM}_{\ell} d_{\rm sl} / a^2 \gtrsim 0.65~ {\rm pc^2 \ AU^{-2} \ cm^{-3}}. Caustics produce strong magnifications (≲102\lesssim 10^2) on short time scales (∼\sim hours to days and perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to 1~GHz). However, strong suppression also occurs in long-duration (∼\sim months) troughs. For geometries that produce multiple images, the resulting burst components will arrive differentially by <1 μ< 1~\mus to tens of ms and they will show different apparent dispersion measures, δDMapparent∼1\delta{\rm DM}_{\rm apparent} \sim 1 pc cm−3^{-3}. Arrival time perturbations may mask any underlying periodicity with period ≲1\lesssim 1 s. When arrival times differ by less than the burst width, interference effects in dynamic spectra are expected. Strong lensing requires source sizes smaller than (Fresnel scale)2/a({\rm Fresnel~scale)^2} / a, which can be satisfied by compact objects such as neutron star magnetospheres but not by AGNs. Much of the phenomenology of the repeating fast radio burst source FRB121102 is similar to lensing effects. The overall picture can be tested by obtaining wideband spectra of bursts (from <1<1 to 10 GHz and possibly higher), which can also be used to characterize the plasma environment near FRB sources. A rich variety of phenomena is expected from an ensemble of lenses near the FRB source. We discuss constraints on densities, magnetic fields, and locations of plasma lenses related to requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    Scale Invariance in Road Networks

    Full text link
    We study the topological and geographic structure of the national road networks of the United States, England and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2 < alpha < 2.4, and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent alpha and the fractal dimensions governing the placement of roads and intersections.Comment: 6 pages, 10 figures; revision incorporates more rigorous statistical analyses; matches journal versio
    • …
    corecore