641 research outputs found

    Optimal Bayesian stepped-wedge cluster randomised trial designs for binary outcome data

    Full text link
    Under a generalised estimating equation analysis approach, approximate design theory is used to determine Bayesian D-optimal designs. For two examples, considering simple exchangeable and exponential decay correlation structures, we compare the efficiency of identified optimal designs to balanced stepped-wedge designs and corresponding stepped-wedge designs determined by optimising using a normal approximation approach. The dependence of the Bayesian D-optimal designs on the assumed correlation structure is explored; for the considered settings, smaller decay in the correlation between outcomes across time periods, along with larger values of the intra-cluster correlation, leads to designs closer to a balanced design being optimal. Unlike for normal data, it is shown that the optimal design need not be centro-symmetric in the binary outcome case. The efficiency of the Bayesian D-optimal design relative to a balanced design can be large, but situations are demonstrated in which the advantages are small. Similarly, the optimal design from a normal approximation approach is often not much less efficient than the Bayesian D-optimal design. Bayesian D-optimal designs can be readily identified for stepped-wedge cluster randomised trials with binary outcome data. In certain circumstances, principally ones with strong time period effects, they will indicate that a design unlikely to have been identified by previous methods may be substantially more efficient. However, they require a larger number of assumptions than existing optimal designs, and in many situations existing theory under a normal approximation will provide an easier means of identifying an efficient design for binary outcome data

    Stepped wedge cluster randomized controlled trial designs: a review of reporting quality and design features

    Get PDF
    Abstract Background The stepped wedge (SW) cluster randomized controlled trial (CRCT) design is being used with increasing frequency. However, there is limited published research on the quality of reporting of SW-CRCTs. We address this issue by conducting a literature review. Methods Medline, Ovid, Web of Knowledge, the Cochrane Library, PsycINFO, the ISRCTN registry, and ClinicalTrials.gov were searched to identify investigations employing the SW-CRCT design up to February 2015. For each included completed study, information was extracted on a selection of criteria, based on the CONSORT extension to CRCTs, to assess the quality of reporting. Results A total of 123 studies were included in our review, of which 39 were completed trial reports. The standard of reporting of SW-CRCTs varied in quality. The percentage of trials reporting each criterion varied to as low as 15.4%, with a median of 66.7%. Conclusions There is much room for improvement in the quality of reporting of SW-CRCTs. This is consistent with recent findings for CRCTs. A CONSORT extension for SW-CRCTs is warranted to standardize the reporting of SW-CRCTs

    A Bayesian adaptive design for biomarker trials with linked treatments.

    Get PDF
    BACKGROUND: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. METHODS: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. RESULTS: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. CONCLUSIONS: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.This work was supported by the Medical Research Council (grant number G0800860) and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/bjc.2015.27

    Explaining Evidence Denial as Motivated Pragmatically Rational Epistemic Irrationality

    Get PDF
    This paper introduces a model for evidence denial that explains this behavior as a manifestation of rationality and it is based on the contention that social values (measurable as utilities) often underwrite these sorts of responses. Moreover, it is contended that the value associated with group membership in particular can override epistemic reason when the expected utility of a belief or belief system is great. However, it is also true that it appears to be the case that it is still possible for such unreasonable believers to reverse this sort of dogmatism and to change their beliefs in a way that is epistemically rational. The conjecture made here is that we should expect this to happen only when the expected utility of the beliefs in question dips below a threshold where the utility value of continued dogmatism and the associated group membership is no longer sufficient to motivate defusing the counter-evidence that tells against such epistemically irrational beliefs

    Lanthanides: Applications in Cancer Diagnosis and Therapy

    Get PDF
    Lanthanide complexes are of increasing importance in cancer diagnosis and therapy, owing to the versatile chemical and magnetic properties of the lanthanide-ion 4f electronic configuration. Following the first implementation of gadolinium(III)-based contrast agents in magnetic resonance imaging in the 1980s, lanthanide-based small molecules and nanomaterials have been investigated as cytotoxic agents and inhibitors, in photodynamic therapy, radiation therapy, drug/gene delivery, biosensing, and bioimaging. As the potential utility of lanthanides in these areas continues to increase, this timely review of current applications will be useful to medicinal chemists and other investigators interested in the latest developments and trends in this emerging field

    A review of Bayesian perspectives on sample size derivation for confirmatory trials

    Full text link
    Sample size derivation is a crucial element of the planning phase of any confirmatory trial. A sample size is typically derived based on constraints on the maximal acceptable type I error rate and a minimal desired power. Here, power depends on the unknown true effect size. In practice, power is typically calculated either for the smallest relevant effect size or a likely point alternative. The former might be problematic if the minimal relevant effect is close to the null, thus requiring an excessively large sample size. The latter is dubious since it does not account for the a priori uncertainty about the likely alternative effect size. A Bayesian perspective on the sample size derivation for a frequentist trial naturally emerges as a way of reconciling arguments about the relative a priori plausibility of alternative effect sizes with ideas based on the relevance of effect sizes. Many suggestions as to how such `hybrid' approaches could be implemented in practice have been put forward in the literature. However, key quantities such as assurance, probability of success, or expected power are often defined in subtly different ways in the literature. Starting from the traditional and entirely frequentist approach to sample size derivation, we derive consistent definitions for the most commonly used `hybrid' quantities and highlight connections, before discussing and demonstrating their use in the context of sample size derivation for clinical trials

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Exact group sequential designs for two-arm experiments with Poisson distributed outcome variables

    Get PDF
    We describe and compare two methods for the group sequential design of two-arm experiments with Poisson distributed data, which are based on a normal approximation and exact calculations respectively. A framework to determine near-optimal stopping boundaries is also presented. Using this framework, for a considered example, we demonstrate that a group sequential design could reduce the expected sample size under the null hypothesis by as much as 44% compared to a fixed sample approach. We conclude with a discussion of the advantages and disadvantages of the two presented procedures

    Mentalization for Offending Adult Males (MOAM): study protocol for a randomized controlled trial to evaluate mentalization-based treatment for antisocial personality disorder in male offenders on community probation

    Get PDF
    Background Antisocial personality disorder (ASPD), although associated with very significant health and social burden, is an under-researched mental disorder for which clinically effective and cost-effective treatment methods are urgently needed. No intervention has been established for prevention or as the treatment of choice for this disorder. Mentalization-based treatment (MBT) is a psychotherapeutic treatment that has shown some promising preliminary results for reducing personality disorder symptomatology by specifically targeting the ability to recognize and understand the mental states of oneself and others, an ability that is compromised in people with ASPD. This paper describes the protocol of a multi-site RCT designed to test the effectiveness and cost-effectiveness of MBT for reducing aggression and alleviating the wider symptoms of ASPD in male offenders subject to probation supervision who fulfil diagnostic criteria for ASPD. Methods Three hundred and two participants recruited from a pool of offenders subject to statutory supervision by the National Probation Service at 13 sites across the UK will be randomized on a 1:1 basis to 12 months of probation plus MBT or standard probation as usual, with follow-up to 24 months post-randomization. The primary outcome is frequency of aggressive antisocial behaviour as assessed by the Overt Aggression Scale – Modified. Secondary outcomes include violence, offending rates, alcohol use, drug use, mental health status, quality of life, and total service use costs. Data will be gathered from police and criminal justice databases, NHS record linkage, and interviews and self-report measures administered to participants. Primary analysis will be on an intent-to-treat basis; per-protocol analysis will be undertaken as secondary analysis. The primary outcome will be analysed using hierarchical mixed-effects linear regression. Secondary outcomes will be analysed using mixed-effects linear regression, mixed-effects logistic regression, and mixed-effects Poisson models for secondary outcomes depending on whether the outcome is continuous, binary, or count data. A cost-effectiveness and cost-utility analysis will be undertaken. Discussion This definitive, national, multi-site trial is of sufficient size to evaluate MBT to inform policymakers, service commissioners, clinicians, and service users about its potential to treat offenders with ASPD and the likely impact on the population at risk
    • 

    corecore