3 research outputs found

    Study on baseline characteristics and lipid profile abnormalities among type 2 diabetic patients attending urban diabetic care hospital, Bangladesh

    Get PDF
    Background: Altered levels of serum glycated hemoglobin (HbA1c) and lipid profile are prevalent in patients having type 2 diabetic mellitus (T2DM). Aim of the study was to investigate the relationship between serum HbA1c and lipid profile in T2DM to predict diabetic dyslipidemia.Methods: A structured questionnaire was filled up by each study subject to collect data according to study protocol including age, gender, BMI, BP, residential status, socio-economic status, educational status, physical activity, dietary habit, smoking and duration of diabetes. We collected blood samples from 270 type-2 diabetes mellitus (T2DM) patients aged 30-65 years after overnight fasting (10-12 hours). Then blood samples collected from T2DM patients were used to measure serum levels of HbA1c, fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were estimated by standard laboratory methods.Results: In this study, increased levels of fasting blood glucose (8.61 mmo/l), HbA1c (7.86%), TC (226.15 mg/dl), TG (193.34 mg/dl) and LDL (147.37 mg/dl), and decreased levels of HDL (40.36 mg/dl) were observed in T2DM patients. Moreover, the strong positive correlation of HbA1c levels with FBG, TC, TG, and LDL levels were found in this study. Besides, a very strong and significant negative correlation (R2=0.1822) between the serum levels of HbA1c and HDL were noted in this study.Conclusions: This study revealed a strong correlation between dyslipidemia and serum levels of HbA1c in T2DM patients

    Isolation, characterization, pharmacological evaluation and in silico modeling of bioactive secondary metabolites from Ziziphus oxyphylla a member of Rhamnaceae family

    Get PDF
    Purpose: To investigate the pharmacological properties of the medicinally active metabolites of Ziziphus oxyphylla. Methods: Compound I-IV were isolated form the root of Ziziphus oxyphylla (compound I = Stigmasterol, II = Betulinic acid, III = 1,2,3 benzene triol and IV = 5-Pentadecanoic acid). Various spectroscopic techniques were used to identify and characterize the isolated compounds. DPPH (2,2-diphenyl-1- picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays were employed to determine the antioxidant potentials of these compounds. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition potential of the isolated compounds were also evaluated. Results: Amongst the isolated compounds, compound IV was the most potent antioxidant against DPPH and ABTS free radicals, exhibiting half-maximal concentration (IC50) values of 64 and 65 μg/mL, respectively. All the compounds exhibited good inhibition of acetylcholinesterase and butyrylcholinesterase. However, stigmasterol was more potent than the other isolated compounds, showing IC50 of 85.10 ± 1.45 and 84.81 ± 1.17, respectively, against AChE and BChE. Conclusion: Although, all isolated compounds inhibited the selected free radicals (DPPH and ABTS) and cholinesterases, stigmasterol and 5-penatadecanoic acid were more potent than other two compounds. Thus the former can potentially be used to treat oxidative stress and neurodegenerative diseases. Keywords: Ziziphus oxyphylla, Stigmasterol, 5-Pentadecanoic acid, Antioxidant, Acetyl Cholinesterase, Butyryl cholinesteras
    corecore