85 research outputs found

    Preliminary assessment of the environmental baseline in the Fylde, Lancashire

    Get PDF
    This report presents the collated preliminary results from the British Geological Survey (BGS) led project Science-based environmental baseline monitoring associated with shale gas development in the Fylde, Lancashire. The project has been funded by a combination of BGS National Capability funding, in-kind contributions from project partners and a grant awarded by the Department of Business Energy and Investment Strategy (BEIS). It complements an on-going project, in which similar activities are being carried out, in the Vale of Pickering, North Yorkshire. Further information on the projects can be found on the BGS website: www.bgs.ac.uk. The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources Ltd) before any shale gas operations take place. As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK. The monitoring programme is continuing. However, there are already some very important findings emerging from the limited datasets which should be taken into account when developing future monitoring strategy, policy and regulation. The information is not only relevant to Lancashire but will be applicable more widely in the UK and internationally. Although shale gas operations in other parts of the world are well-established, there is a paucity of good baseline data and effective guidance on monitoring. The project will also allow the experience gained, and the scientifically-robust findings to be used, to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities

    Environmental monitoring : phase 4 final report (April 2018 - March 2019)

    Get PDF
    This report describes the results of activities carried out as part of the Environmental Monitoring Project (EMP) led by the British Geological Survey (BGS) in areas around two shale gas sites in England – Kirby Misperton (Vale of Pickering, North Yorkshire) and Preston New Road (Fylde, Lancashire). It focuses on the monitoring undertaken during the period April 2018–March 2019 but also considers this in the context of earlier monitoring results that have been covered in reports for earlier phases of the project (Phases I–IV) 2 . The EMP project is a multi-partner project involving BGS together with Public Health England (PHE), University of Birmingham, University of Bristol, University of Manchester, Royal Holloway University of London (RHUL) and University of York. The work has been enabled by funding from a combination of the BGS National Capability programme, a grant awarded by the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) and additional benefit-in-kind contributions from all partners. The project comprises the comprehensive monitoring of different environment compartments and properties at and around the two shale-gas sites. The component parts of the EMP are all of significance when considering environmental and human health risks associated with shale gas development. Included are seismicity, ground motion, water (groundwater and surface water), soil gas, greenhouse gases, air quality, and radon. The monitoring started before hydraulic fracturing had taken place at the two locations, and so the results obtained before the initiation of operations at the shale-gas sites represent baseline conditions. It is important to characterise adequately the baseline conditions so that any future changes caused by shale gas operations, including hydraulic fracturing, can be identified. This is also the case for any other new activities that may impact those compartments of the environment being monitored as part of the project. In the period October 2018–December 2018, an initial phase of hydraulic fracturing took place at the Preston New Road (PNR) shale-gas site (shale gas well PNR1-z) in Lancashire. This was followed by a period of flow testing of the well to assess its performance (to end of January 2019). The project team continued monitoring during these various activities and several environmental effects were observed. These are summarised below and described in more detail within the report. The initiation of operations at the shale-gas site signified the end of baseline monitoring. At the Kirby Misperton site (KMA), approval has not yet been granted for hydraulic fracturing of the shale gas well (KM8), and so no associated operations have taken place during the period covered by this report. The effects on air quality arising from the mobilisation of equipment in anticipation of hydraulic fracturing operations starting was reported in the Phase III report, and in a recently published paper3 . Following demobilisation of the equipment and its removal from the site, conditions returned to baseline and the on-going monitoring (reported in this report) is effectively a continuation of baseline monitoring

    Quality assurance in radon SSNTD measurements : PHE experience

    No full text
    More than 40 years ago, Public Health England (PHE and its predecessor organizations) established a radon laboratory to deliver services for radon measurements in homes and workplaces in the UK [1]. A key factor in developing these services was to set up stringent quality control and assurance protocols to enable the delivery of reliable and accurate results. There are nearly 40 checkpoints in the process, most exceeding 94% pass rate, starting from a quality check of poly-allyl diglycol carbonate (PADC) polymer and ending with a result modified by seasonal and occupancy correction factors. This work aims to show how to obtain the reliable results of radon measurements

    Polyurethane Membranes Modified with Isopropyl Myristate as a Potential Candidate for Encapsulating Electronic Implants: A Study of Biocompatibility and Water Permeability

    No full text
    Medical polyurethanes have shown good bio-stability and mechanical properties and have been used as coating for implantable medical devices. However, despite their excellent properties, they are relatively permeable to liquid water and water vapour which is a drawback for electronic implant encapsulation. In this study polyether polyurethanes with different soft segment molecular weights were modified by incorporating isopropyl myristate (IPM), as a hydrophobic modifying agent, and the effect of IPM on water resistant and biocompatibility of membranes were investigated. IPM changed the surface properties of the polyurethane film and reduced its surface energy. Polyurethane films were found to be stable with IPM concentrations of 1–5 wt% based upon their chemistry; however it leached out in BSA at higher concentrations. Though, low concentrations of IPM reduced both liquid water and water vapour permeability; at higher IPM content liquid permeability did not improved significantly. In general, the polyurethane materials showed much lower water permeability compared with currently used silicone packaging material for electronic implants. In addition, cytotoxicity assessment of IPM containing polyurethanes showed no evidence of cytotoxcity up to 5 wt% IPM
    • …
    corecore