68 research outputs found

    Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study

    Get PDF
    BACKGROUND: Caffeine, 1,3,7-trimethylxanthine, is widely consumed by women of reproductive age. Although caffeine has been proposed to inhibit fetal growth, previous studies on the effects of caffeine on infant birth size have yielded inconsistent findings. This inconsistency may result from failure to account for individual differences in caffeine metabolism related to polymorphisms in the gene for CYP1A2, the major caffeine-metabolizing enzyme. METHODS: Five hundred fourteen Japanese women participated in a prospective cohort study in Sapporo, Japan, from 2002 to 2005, and 476 mother-child pairs were included for final analysis. RESULTS: Caffeine intake was not significantly associated with mean infant birth size. When caffeine intake and CYP1A2 C164A genotype were considered together, women with the AA genotype and caffeine intake of >= 300 mg per day had a mean reduction in infant birth head circumference of 0.8 cm relative to the reference group after adjusting for confounding factors. In a subgroup analysis, only nonsmokers with the AA genotype and caffeine intake of >= 300 mg per day had infants with decreased birth weight (mean reduction, 277 g) and birth head circumference (mean reduction, 1.0 cm). CONCLUSION: Nonsmokers who rapidly metabolize caffeine may be at increased risk for having infants with decreased birth size when consuming >= 300 mg of caffeine per day.This is the author's accepted version of their manuscript of the following article: Sasaki, et al. Pediatric Research (2017) 82, 19–28. The final publication is available at: http://dx.doi.org/10.1038/pr.2017.7

    The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. <it>Anopheles sinensis </it>plays a major role in the maintenance of <it>Plasmodium vivax </it>malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and <it>An. sinensis </it>in Yongcheng city, a representative region of <it>P. vivax </it>malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and <it>An. sinensis</it>.</p> <p>Results</p> <p><it>Culex tritaeniorhynchus </it>was the most prevalent mosquito species and <it>An. sinensis </it>was the sole potential vector of <it>P. vivax </it>malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus</it>. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female <it>An. sinensis </it>was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female <it>An. sinensis </it>while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female <it>An. sinensis </it>and the average relative humidity (P < 0.05) in Wangshanzhuang village.</p> <p>Conclusions</p> <p>Pigs, goats and calves were more attractive to <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>than dogs, humans, and chickens. Female <it>An. sinensis </it>host-seeking activity mainly occurred from 19:00 to 21:00. Thus, we propose that future vector control against <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>in the areas along the Huang-Huai River of central China should target the interface of human activity with domestic animals and adopt before human hosts go to bed at night.</p

    Programming of metabolic effects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid

    Get PDF
    Perfluorooctanoic acid (PFOA) is known to cause developmental toxicity and is a suggested endocrine disrupting compound (EDC). Early life exposure to EDCs has been implicated in programming of the developing organism for chronic diseases later in life. Here we study perinatal metabolic programming by PFOA using an experimental design relevant for human exposure. C57BL/6JxFVB hybrid mice were exposed during gestation and lactation via maternal feed to seven low doses of PFOA at and below the NOAEL used for current risk assessment (3–3000 μg/kg body weight/day). After weaning, offspring were followed for 23–25 weeks without further exposure. Offspring showed a dose-dependent decrease in body weight from postnatal day 4 to adulthood. Growth under high fat diet in the last 4–6 weeks of follow-up was increased in male and decreased in female offspring. Both sexes showed increased liver weights, hepatic foci of cellular alterations and nuclear dysmorphology. In females, reductions in perigonadal and perirenal fat pad weights, serum triglycerides and cholesterol were also observed. Endocrine parameters, such as glucose tolerance, serum insulin and leptin, were not affected. In conclusion, our study with perinatal exposure to PFOA in mice produced metabolic effects in adult offspring. This is most likely due to disrupted programming of metabolic homeostasis, but the assayed endpoints did not provide a mechanistic explanation. The BMDL of the programming effects in our study is below the current point of departure used for calculation of the tolerable daily intake.The authors wish to acknowledge the support of the biotechnicians from the team of Hans Strootman at the RIVM animal facilities. Further technical support was provided by Piet Beekhof, Hennie Hodemaekers, Sandra Imholz (RIVM), Mirjam Koster (UU), Stefan van Leeuwen (RIKILT), Jacco Koekkoek and Marja Lamoree (VU). This study was funded by the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement OBELIX 227391
    corecore