130 research outputs found

    IL-23 Contributes to Control of Chronic Helicobacter Pylori Infection and the Development of T Helper Responses in a Mouse Model1

    Get PDF
    The immune response to Helicobacter pylori involves a mixed T helper-1, T helper-2, and T helper-17 response. It has been suggested that T helper cells contribute to the gastric inflammatory response during infection, and that T helper 1 (Th1) and T helper 17 (Th17) subsets may be required for control of H. pylori colonization in the stomach. The relative contributions of these subsets to gastritis and control of infection are still under investigation. IL-23 plays a role in stabilizing and expanding Th17 cell cytokine expression. Expression of IL-23, which is induced in dendritic cells and macrophages following co-culture with H. pylori, has also been reported to increase during H. pylori infection in humans and animal models. To investigate the role of IL-23 in H. pylori, we infected IL-23p19 deficient mice (IL-23−/−) and wild-type littermates with H. pylori strain SS1. At various time points post-infection, we assessed colonization, gastric inflammation, and cytokine profiles in the gastric tissue. Specifically, H. pylori-infected IL-23−/− mice have higher levels of H. pylori in their stomachs, significantly less chronic gastritis, and reduced expression of IL-17 and IFNγ compared to H. pylori-infected wild-type mice. While many of these differences were significant, the H. pylori infected IL-23−/− had mild increases in our measurements of disease severity. Our results indicate that IL-23 plays a role in the activation of the immune response and induction of gastritis in response to H. pylori by contributing to the control of infection and severity of gastritis

    53BP1 expression is a modifier of the prognostic value of lymph node ratio and CA 19–9 in pancreatic adenocarcinoma

    Get PDF
    BACKGROUND: 53BP1 binds to the tumor suppressor p53 and has a key role in DNA damage response and repair. Low 53BP1 expression has been associated with decreased survival in breast cancer and has been shown to interact with several prognostic factors in non-small cell lung cancer. The role of 53BP1 in pancreatic ductal adenocarcinoma (PDAC) has yet to be determined. We aimed to investigate whether 53BP1 levels interact with established prognostic factors in PDAC. METHODS: 106 patients for whom there was tissue available at time of surgical resection for PDAC were included. A tissue microarray was constructed using surgical specimens, stained with antibodies to 53BP1, and scored for expression intensity. Univariate and multivariate statistical analyses were performed to investigate the association between 53BP1 and patient survival with known prognostic factors for survival. RESULTS: The association of 53BP1 with several established prognostic factors was examined, including stage, tumor grade, surgical margin, peripancreatic extension, lymph node ratio (LNR), and CA 19–9. We found that 53BP1 modified the effects of known prognostic variables including LNR and CA 19–9 on survival outcomes. When 53BP1 intensity was low, increased LNR was associated with decreased OS (HR 4.84, 95% CI (2.26, 10.37), p<0.001) and high CA19-9 was associated with decreased OS (HR 1.72, 95% CI (1.18, 2.51), p=0.005). When 53BP1 intensity was high, LNR and CA19-9 were no longer associated with OS (p=0.958 and p=0.606, respectively). CONCLUSIONS: In this study, 53BP1, a key player in DNA damage response and repair, was found to modify the prognostic value of two established prognostic factors, LNR and CA 19–9, suggesting 53BP1 may alter tumor behavior and ultimately impact how we interpret the value of other prognostic factors

    Are ulcers a marker for invasive carcinoma in barrett's esophagus? data from a diagnostic variability study with clinical follow-up

    Full text link
    We correlated follow-up information from 138 patients with Barrett's esophagus and varying degrees of dysplasia with the presence of ulcers. Methods A group of pathologist participants were asked to contribute patients’ initial biopsy slides showing Barrett's esophagus (BE) without dysplasia and with epithelial changes indefinite for dysplasia, low grade dysplasia (LGD), high grade dysplasia (HGD), and adenocarcinoma. From the initial 250 cases used for a diagnostic reproducibility study, follow-up information was available for 138 patients. Results There were 44 cases submitted as BE, 22 as BE with epithelial changes indefinite for dysplasia, 26 as BE with LGD, 33 as BE with HGD, and 13 as BE with adenocarcinoma. Ulcers were present in 35/138 cases (25%), including 3/44 cases of BE without dysplasia (7%), 2/22 cases of BE with epithelial changes indefinite for dysplasia (9%), 0/26 cases of BE with LGD (0%), 10/33 cases of BE with HGD (30%), and 7/13 cases of BE with adenocarcinoma (54%). On follow-up, there were no invasive carcinomas detected among the BE without dysplasia group (median follow-up = 38.5 months). Adenocarcinomas were detected in 4/22 cases (18%) submitted as BE with epithelial changes indefinite for dysplasia at 19, 55, 60, and 62 months and in 4/26 cases (15%) of BE with LGD at 9, 9, 11, and 60 months. None of these carcinomas occurred in cases in which an ulcer was present in the initial biopsy specimen. Among the 33 HGD cases, 20 (60%) were found to have adenocarcinoma on subsequent resection specimens. The presence of an ulcer with HGD increased the likelihood of finding carcinoma in the resection specimen, as 8/10 biopsies (80%) of HGD patients with ulcers had carcinoma, compared to 12/23 biopsies (52%) of HGD patients without ulcers. All of the cases interpreted as adenocarcinomas on biopsy were found either to have invasive carcinoma on esophageal resection or to have metastases that were demonstrated in unresectable patients. Conclusion If an ulcer accompanies HGD in a biopsy specimen from a patient with BE, it is likely that invasive carcinoma is also present at that time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75186/1/j.1572-0241.2002.05420.x.pd

    HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma

    Get PDF
    CONTEXT: ERBB2 (erb-b2 receptor tyrosine kinase 2 or HER2) is currently the only biomarker established for selection of a specific therapy for patients with advanced gastroesophageal adenocarcinoma (GEA). However, there are no comprehensive guidelines for the assessment of HER2 in patients with GEA. OBJECTIVES: To establish an evidence-based guideline for HER2 testing in patients with GEA, to formalize the algorithms for methods to improve the accuracy of HER2 testing while addressing which patients and tumor specimens are appropriate, and to provide guidance on clinical decision making. DESIGN: The College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology convened an expert panel to conduct a systematic review of the literature to develop an evidence-based guideline with recommendations for optimal HER2 testing in patients with GEA. RESULTS: The panel is proposing 11 recommendations with strong agreement from the open-comment participants. RECOMMENDATIONS: The panel recommends that tumor specimen(s) from all patients with advanced GEA, who are candidates for HER2-targeted therapy, should be assessed for HER2 status before the initiation of HER2-targeted therapy. Clinicians should offer combination chemotherapy and a HER2-targeted agent as initial therapy for all patients with HER2-positive advanced GEA. For pathologists, guidance is provided for morphologic selection of neoplastic tissue, testing algorithms, scoring methods, interpretation and reporting of results, and laboratory quality assurance. CONCLUSIONS: This guideline provides specific recommendations for assessment of HER2 in patients with advanced GEA while addressing pertinent technical issues and clinical implications of the results

    HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: Guideline From the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology

    Get PDF
    -ERBB2 (erb-b2 receptor tyrosine kinase 2 or HER2) is currently the only biomarker established for selection of a specific therapy for patients with advanced gastroesophageal adenocarcinoma (GEA). However, there are no comprehensive guidelines for the as

    mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation

    Get PDF
    PGE2 is a lipid mediator of the initiation and resolution phases of inflammation, as well as a regulator of immune system responses to inflammatory events. PGE2 is produced and sensed by T cells, and autocrine or paracrine PGE2 can affect T cell phenotype and function. In this study, we use a T cell-dependent model of colitis to evaluate the role of PGE2 on pathological outcome and T-cell phenotypes. CD4+ T effector cells either deficient in mPGES-1 or the PGE2 receptor EP4 are less colitogenic. Absence of T cell autocrine mPGES1-dependent PGE2 reduces colitogenicity in association with an increase in CD4+RORγt+ cells in the lamina propria. In contrast, recipient mice deficient in mPGES-1 exhibit more severe colitis that corresponds with a reduced capacity to generate FoxP3+ T cells, especially in mesenteric lymph nodes. Thus, our research defines how mPGES-1-driven production of PGE2 by different cell types in distinct intestinal locations impacts T cell function during colitis. We conclude that PGE2 has profound effects on T cell phenotype that are dependent on the microenvironment

    Excess PLAC8 promotes an unconventional ERK2-dependent EMT in colon cancer

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) transcriptional program is characterized by repression of E-cadherin (CDH1) and induction of N-cadherin (CDH2), and mesenchymal genes like vimentin (VIM). Placenta-specific 8 (PLAC8) has been implicated in colon cancer; however, how PLAC8 contributes to disease is unknown, and endogenous PLAC8 protein has not been studied. We analyzed zebrafish and human tissues and found that endogenous PLAC8 localizes to the apical domain of differentiated intestinal epithelium. Colon cancer cells with elevated PLAC8 levels exhibited EMT features, including increased expression of VIM and zinc finger E-box binding homeobox 1 (ZEB1), aberrant cell motility, and increased invasiveness. In contrast to classical EMT, PLAC8 overexpression reduced cell surface CDH1 and upregulated P-cadherin (CDH3) without affecting CDH2 expression. PLAC8-induced EMT was linked to increased phosphorylated ERK2 (p-ERK2), and ERK2 knockdown restored cell surface CDH1 and suppressed CDH3, VIM, and ZEB1 upregulation. In vitro, PLAC8 directly bound and inactivated the ERK2 phosphatase DUSP6, thereby increasing p-ERK2. In a murine xenograft model, knockdown of endogenous PLAC8 in colon cancer cells resulted in smaller tumors, reduced local invasion, and decreased p-ERK2. Using MultiOmyx, a multiplex immunofluorescence-based methodology, we observed coexpression of cytosolic PLAC8, CDH3, and VIM at the leading edge of a human colorectal tumor, supporting a role for PLAC8 in cancer invasion in vivo

    MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors

    Get PDF
    Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (iBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16(P20ST)), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16(-/)(-) colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets. is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.Peer reviewe
    corecore