255 research outputs found

    Will we observe black holes at LHC?

    Get PDF
    The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.Comment: 5 pages, 2 figures. Minor changes to match version to appear in Class. Quant. Gra

    Comparison of Magnetic Resonance Feature Tracking for Strain Calculation With Harmonic Phase Imaging Analysis

    Get PDF
    ObjectivesTo compare a steady-state free precession cine sequence–based technique (feature tracking [FT]) to tagged harmonic phase (HARP) analysis for peak average circumferential myocardial strain (εcc) analysis in a large and heterogeneous population of boys with Duchenne muscular dystrophy (DMD).BackgroundCurrent εcc assessment techniques require cardiac magnetic resonance–tagged imaging sequences, and their analysis is complex. The FT method can readily be performed on standard cine (steady-state free precession) sequences.MethodsWe compared mid-left ventricular whole-slice εcc by the 2 techniques in 191 DMD patients grouped according to age and severity of cardiac dysfunction: group B: DMD patients 10 years and younger with normal ejection fraction (EF); group C: DMD patients older than 10 years with normal EF; group D: DMD patients older than 10 years with reduced EF but negative myocardial delayed enhancement (MDE); group E: DMD patients older than 10 years with reduced EF and positive MDE; and group A: 42 control subjects. Retrospective, offline analysis was performed on matched tagged and steady-state free precession slices.ResultsFor the entire study population (N = 233), mean FT εcc values (−13.3 ± 3.8%) were highly correlated with HARP εcc values (−13.6 ± 3.4%), with a Pearson correlation coefficient of 0.899. The mean εcc of DMD patients determined by HARP (−12.52 ± 2.69%) and FT (−12.16 ± 3.12%) was not significantly different (p = NS). Similarly, the mean εcc of the control subjects by determined HARP (−18.85 ± 1.86) and FT (−18.81 ± 1.83) was not significantly different (p = NS). Excellent correlation between the 2 methods was found among subgroups A through E, except there was no significant difference in strain between groups B and C with FT analysis.ConclusionsFT-based assessment of εcc correlates highly with εcc derived from tagged images in a large DMD patient population with a wide range of cardiac dysfunction and can be performed without additional imaging

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo

    Get PDF
    Abstract Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn 2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An A-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC 50 of 0.045 Mmol/L in the screening biochemical assay and an EC 50 of 0.025 Mmol/L in HeLa cell -based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classe
    • …
    corecore