5 research outputs found

    Iron Intermetallic Compounds (IMCs) Formation Mechanism in the Molten Aluminium Zinc (Al-Zn) Coating Alloy

    Get PDF
    To prevent corrosion of steel products, the steel industry often relies on Al-Zn based alloy coatings, applied through hot-dip coating technology. Despite this, a long-standing problem in the galvanizing industry involves the formation of Fe-based intermetallic compounds (IMCs) in the Al-Zn coating bath, caused by iron dissolution from steel products. Such IMCs are the primary source of dross formation in the Al-Zn bath, which inevitably leads to metal spot defects in the coated steel products and bottom dross build-up in the Al-Zn bath. The present research aims to investigate the mechanism of Fe transformation into IMCs. To achieve this, Fe saturated and unsaturated Al-Zn alloys were doped with low carbon steel at a temperature of 600 °C. The samples were collected at regular intervals and quenched in water. The optical microscopy (OM) and scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) were used to study the transformation of steel strips into Fe-IMCs particles in molten Al-Zn alloys. The study findings suggest that the Fe transformation into Fe-IMCs is a complex process, where the steel strip surface is initially oxidized, and Al5Fe2 and Al3Fe are formed, which finally transform into Al8Fe2Si(Zn) (τ5c) IMCs particles. These results can assist galvanizers in understanding formation of Fe-IMCs and bottom dross build up in the costing pots

    Effort expectancy, task technology fit, and ERP adoption behavior: Moderating effect of trust in technology : evidence from SMEs of Pakistan

    No full text
    Usually, adopting technology in the business boosts its performance, but SMEs are still reluctant to adopt modern technology such as ERP. This research has examined link among effort expectancy, task technology fit, and ERP adoption behavior in SMEs in Pakistan. Furthermore, this study examines the moderating effect of trust in technology on the said relationships. This study used a quantitative research technique. Google survey form method used to collect the data from employees of SMEs in Pakistan those having ERP systems. To measure and confirm the hypothesis, the study employed SmartPLS software. The findings show a significant linkage among effort expectancy, ERP adoption behavior, and task technology fit ERP adoption behavior. Besides the significance of direct relationships, the moderating effect of trust in technology is also significant in relation between effort expectancy, ERP adoption behavior, task technology fit and ERP adoption behavior, further strengthening the main hypothesis. This study's findings provide implications for organizations considering implementing an ERP system. By identifying the factors that influence ERP adoption behavior, organizations can develop strategies to increase the likelihood of successful implementation of ERP

    Intermetallic Compounds Formation during 316L Stainless Steel Reaction with Al-Zn-Si Coating Alloy

    No full text
    Steel products are coated with Aluminum (Al) and Zinc (Zn) alloys to improve their corrosion properties. Bulk steel products are coated in batches; however, steel sheets are coated by a continuous hot-dip galvanizing process. Steel sheets are guided into and out of the molten Al-Zn-Si (AZ) bath with the help of stainless-steel rolls, known as guiding, and sink rolls. These rolls are subjected to excessive surface corrosion with molten AZ bath and, hence, are replaced frequently. The surface deterioration of the immersed rolls has been a long-standing issue in the galvanizing industry. In this study, 316L stainless-steel (SS) rods are immersed in the AZ alloy at 600 °C. The immersion time varied from 1 day to 7 days under the static melt conditions in the iron (Fe)-saturated AZ bath. Microstructural analysis of the immersed SS samples revealed two distinct intermetallic compound (IMC) layers forming between the SS substrate and AZ alloy. The IMC layer 1 (AL-1) formed between the SS substrate and IMC layer 2 (AL-2), growing in thickness from 68 µm to 120 µm within 5 days of immersion. The AL-2, which formed between AL-1 and AZ alloy after 24 h of immersion, then grew in thickness up to 150 µm with an uneven trend. The AL-1 is composed of Fe2Al5 and that of AL-2 is composed of FeAl3 that were predicted by the FactSage thermodynamic analysis. Crack development between AL-1 and AL-2 layers, and disintegration of AL-2 into the AZ bath, are key findings of this study. A drastic hardness increase was observed because the IMC layers produce a hard and brittle sink roll surface

    Intermetallic Compounds Formation during 316L Stainless Steel Reaction with Al-Zn-Si Coating Alloy

    No full text
    Steel products are coated with Aluminum (Al) and Zinc (Zn) alloys to improve their corrosion properties. Bulk steel products are coated in batches; however, steel sheets are coated by a continuous hot-dip galvanizing process. Steel sheets are guided into and out of the molten Al-Zn-Si (AZ) bath with the help of stainless-steel rolls, known as guiding, and sink rolls. These rolls are subjected to excessive surface corrosion with molten AZ bath and, hence, are replaced frequently. The surface deterioration of the immersed rolls has been a long-standing issue in the galvanizing industry. In this study, 316L stainless-steel (SS) rods are immersed in the AZ alloy at 600 °C. The immersion time varied from 1 day to 7 days under the static melt conditions in the iron (Fe)-saturated AZ bath. Microstructural analysis of the immersed SS samples revealed two distinct intermetallic compound (IMC) layers forming between the SS substrate and AZ alloy. The IMC layer 1 (AL-1) formed between the SS substrate and IMC layer 2 (AL-2), growing in thickness from 68 µm to 120 µm within 5 days of immersion. The AL-2, which formed between AL-1 and AZ alloy after 24 h of immersion, then grew in thickness up to 150 µm with an uneven trend. The AL-1 is composed of Fe2Al5 and that of AL-2 is composed of FeAl3 that were predicted by the FactSage thermodynamic analysis. Crack development between AL-1 and AL-2 layers, and disintegration of AL-2 into the AZ bath, are key findings of this study. A drastic hardness increase was observed because the IMC layers produce a hard and brittle sink roll surface
    corecore