9 research outputs found

    Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera

    Get PDF
    Background: Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Results: Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Conclusions: Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph

    Fast, flexible and low-cost multiphase blood analogue for biomedical and energy applications

    No full text
    During the last two decades, several kinds of particulate blood analogue fluids have been proposed, but none of those were able to mimic the multiphase effects of real blood. Hence, it is clear that it is crucial to develop a simple multiphase blood analogue to be used for in vitro experiments at both macro- and microscale level. To the best of our knowledge, the present work shows for the first time a straightforward and extremely stable blood analogue fluid able to mimic multiphase blood flow phenomena. The present work proposes a simple, low-cost and stable multiphase blood analogue with the ability to mimic microscale blood flow phenomena. The proposed analogue fluid is composed of Brij L4 surfactant micelles suspended in pure water and is extremely easy to be produced. To investigate the ability of this analogue to mimic microscale blood flow phenomena, flow visualizations were performed in a microchannel constriction. In vitro blood phenomena were compared with the measurements performed with the proposed analogue fluid. Additionally, rheological measurements of the multiphase blood analogue were acquired by means of a stress-controlled rheometer and compared with in vitro blood sample viscosity curves. Overall, the results indicate that it is possible to produce a stable particulate fluid with geometrical, mechanical and flow properties similar to in vitro blood. Hence, the proposed analogue has a great potential to be used in flow experiments from macro- to nanoscale levelsFundação para a Ciência e a Tecnologia (FCT) under the strategic grants UIDB/04077/2020, UIDB/04436/2020 and UIDB/00532/2020. The authors are also grateful for the funding of FCT through the projects NORTE-01-0145-FEDER-029394, NORTE-01-0145-FEDER-030171 and POCI-01-0145-FEDER-016861 (PTDC/QEQ-FTT/4287/2014) funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER. The authors also acknowledge FCT for partially financing the research under the framework of the project UTAP-EXPL/CTE/0064/2017, financiado no âmbito do Projeto 5665—Parcerias Internacionais de Ciência e Tecnologia, UT Austin Programme. Partial support from the Spanish Ministry of Science and Education (grant no. DPI2016-78887) and Junta de Extremadura (grants no. GR15014 and IB18005, partially financed by FEDER funds) is gratefully acknowledged too

    Identification and Characterization of Seminal Fluid Proteins in the Asian Tiger Mosquito, Aedes albopictus

    No full text
    corecore