33 research outputs found

    An economic evaluation of neonatal screening for inborn errors of metabolism using tandem mass spectrometry in Thailand

    Full text link
    © 2015 Thiboonboon et al. Background: Inborn errors of metabolism (IEM) are a rare group of genetic diseases which can lead to several serious long-term complications in newborns. In order to address these issues as early as possible, a process called tandem mass spectrometry (MS/MS) can be used as it allows for rapid and simultaneous detection of the diseases. This analysis was performed to determine whether newborn screening by MS/MS is cost-effective in Thailand. Method: A cost-utility analysis comprising a decision-tree and Markov model was used to estimate the cost in Thai baht (THB) and health outcomes in life-years (LYs) and quality-adjusted life year (QALYs) presented as an incremental cost-effectiveness ratio (ICER). The results were also adjusted to international dollars (I)usingpurchasingpowerparities(PPP)(1I) using purchasing power parities (PPP) (1 I = 17.79 THB for the year 2013). The comparisons were between 1) an expanded neonatal screening programme using MS/MS screening for six prioritised diseases: phenylketonuria (PKU); isovaleric acidemia (IVA); methylmalonic acidemia (MMA); propionic acidemia (PA); maple syrup urine disease (MSUD); and multiple carboxylase deficiency (MCD); and 2) the current practice that is existing PKU screening. A comparison of the outcome and cost of treatment before and after clinical presentations were also analysed to illustrate the potential benefit of early treatment for affected children. A budget impact analysis was conducted to illustrate the cost of implementing the programme for 10 years. Results: The ICER of neonatal screening using MS/MS amounted to 1,043,331 THB per QALY gained (58,647 IperQALYgained).ThepotentialbenefitsofearlydetectioncomparedwithlatedetectionyieldedsignificantresultsforPKU,IVA,MSUD,andMCDpatients.Thebudgetimpactanalysisindicatedthattheimplementationcostoftheprogrammewasexpectedatapproximately2,700millionTHB(152millionI per QALY gained). The potential benefits of early detection compared with late detection yielded significant results for PKU, IVA, MSUD, and MCD patients. The budget impact analysis indicated that the implementation cost of the programme was expected at approximately 2,700 million THB (152 million I) over 10 years. Conclusion: At the current ceiling threshold, neonatal screening using MS/MS in the Thai context is not cost-effective. However, the treatment of patients who were detected early for PKU, IVA, MSUD, and MCD, are considered favourable. The budget impact analysis suggests that the implementation of the programme will incur considerable expenses under limited resources. A long-term epidemiological study on the incidence of IEM in Thailand is strongly recommended to ascertain the magnitude of problem. Copyright

    Novel mutation affecting the pterin-binding site of PTS gene and review of PTS mutations in Thai patients with 6-pyruvoyltetrahydropterin synthase deficiency

    Full text link
    Tetrahydrobiopterin (BH(4)) deficiency comprises heterogeneous disorders resulting in hyperphenylalaninaemia (HPA) and lack of monoamine neurotransmitters. Among these, 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency is the most common disorder. We report a female Thai patient with PTPS deficiency who was initially detected by newborn screening for HPA, and later treated by supplements of BH(4), L: -dopa/carbidopa, and 5-hydroxytryptophan. Monitoring of serum prolactin representing dopamine sufficiency is used for optimizing the dosage of L: -dopa. She showed a remarkable progress of development despite delayed treatment at 5 months of age. Mutation analysis revealed two heterozygous missense mutations of the PTS gene: c.259C>T (p.P87S) inherited from the father; and c.147T>G (p.H49Q) inherited from the mother. The latter is a novel mutation that affects the pterin-binding site of the PTPS enzyme. This novel mutation expands the mutation spectrum of PTPS deficiency. Notably, some PTS mutations have been reported in both Thai and Chinese patients. Whether these common mutations are the result of a founder effect with common ancestors of Thai and Chinese people or intermarriage between Thai and Chinese descents in Thailand remain unclear. In conclusion, severe neurological impairment from BH(4) deficiency could be prevented by newborn screening for HPA and proper metabolic management. However, pterin analysis for early diagnosis of BH(4) deficiency is still not available in most developing countries
    corecore