6 research outputs found
Cognitive effects of simulated galactic cosmic radiation are mediated by ApoE status, sex, and environment in APP knock-in mice
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer\u27s disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male AP
Smoking Is Associated With Low Levels of Soluble PD-L1 in Rheumatoid Arthritis
BackgroundSmoking is a risk factor for developing rheumatoid arthritis (RA), but the mechanism remains uncertain. We previously demonstrated that smoking lowers the T cell activation threshold by limiting programmed death protein 1 (PD-1) expression.AimTo investigate how smoking influence the levels of soluble PD-1 ligand (sPD-L1).MethodSerum levels of sPD-L1 were measured in 246 RA patients and in 168 healthy subjects. The analysis was done with respect to inflammation, smoking, treatments, and autoantibody status. The effect of therapeutic TNF-inhibiting antibodies (TNFi) on sPD-L1 was studied in 16 RA patients at their first infliximab infusion. The expression of Fcγ-receptor (FcγR) subclass IIB and IIIA was analyzed with quantitative polymerase chain reaction in peripheral blood mononuclear cells (PBMCs) from 12 RA patients and 15 healthy controls, and in healthy PBMC exposed to IgG containing antibodies to cyclic citrullinated peptides (aCCP).ResultsThe negative association between smoking and sPD-L1 in RA patients was established by multiple logistic regression (OR = 0.52, p = 0.038). Other covariates in the regression model were serum levels of IL-1β representing inflammation (OR = 1.6, p = 0.0076) and aCCP positivity (OR = 1.9, p = 0.047). First infliximab infusion repressed sPD-L1 (p = 0.023) in patients, and low levels of sPD-L1 were found in patients with early RA treated with TNFi (p = 0.018). Treatment with TNFi was associated with higher sPD-L1 in patients with long disease duration (p = 0.041) and restored levels in smokers. In vitro exposure to aCCP+ IgG suppressed sPD-L1 (p = 0.036), but aCCP+ patients with long disease duration had higher sPD-L1 (p = 0.016). High ratio of the inhibitory FcγR subclass IIB over the stimulatory IIIA resulted in low sPD-L1 release (p = 0.029). Smoking was associated with a higher FcγR IIB/IIIA ratio (p = 0.00062) and lower levels of sPD-L1 (p = 0.013).ConclusionIn RA, serum sPD-L1 was related to systemic inflammation and aCCP positivity. Smoking altered the expression of FcγRs and limited sPD-L1 in RA patients, permitting inappropriate T cell responses. Differential regulation of sPD-L1 during the early and late RA may indicate transposition from acute to chronic inflammation
Nicotine changes the microRNA profile to regulate the FOXO memory program of CD8 T cells in rheumatoid arthritis
Objective: Smoking suppresses PD-1 expression in patients with rheumatoid arthritis (RA). In this study, we assess if smoking changed the epigenetic control over CD8 T cell memory formation through a microRNA (miR) dependent mechanism. Methods: Phenotypes of CD8 T cells from smokers and non-smokers, RA and healthy, were analyzed by flow cytometry. A microarray analysis was used to screen for differences in miR expression. Sorted CD8 cells were in vitro stimulated with nicotine and analyzed for transcription of miRs and genes related to memory programming by qPCR. Results: CD27CD107aCD8 T cells, defining a naïve-memory population, had low expression of PD-1. Additionally, the CD27 population was more frequent in smokers (p = 0.0089). Smokers were recognized by differential expression of eight miRs. Let-7c-5p, let-7d-5p and let-7e-5p, miR-92a-3p, miR-150-5p, and miR-181-5p were up regulated, while miR-3196 and miR-4723-5p were down regulated. These miRs were predicted to target proteins within the FOXO-signaling pathway involved in CD8 memory programming. Furthermore, miR-92a-3p was differentially expressed in CD8 cells with naïve-memory predominance. Nicotine exposure of CD8 cells induced the expression of miR-150-5p and miR-181a-5p in the naïve-memory cells in vitro. Additionally, nicotine exposure inverted the ratio between mRNAs of proteins in the FOXO pathway and their targeting miRs. Conclusions: Smokers have a high prevalence of CD8 T cells with a naïve-memory phenotype. These cells express a miR profile that interacts with the memory programming conducted through the FOXO pathway
Bacteroidota inhibit microglia clearance of amyloid-beta and promote plaque deposition in Alzheimer’s disease mouse models
Abstract The gut microbiota and microglia play critical roles in Alzheimer’s disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-β (Aβ) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aβ plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aβ1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aβ clearance and accumulation of amyloid plaques