5 research outputs found

    Comparison of contrast enhanced three dimensional echocardiography with MIBI gated SPECT for the evaluation of left ventricular function

    Get PDF
    Background. In clinical practice and in clinical trials, echocardiography and scintigraphy are used the most for the evaluation of global left ejection fraction (LVEF) and left ventricular (LV) volumes. Actually, poor quality imaging and geometrical assumptions are the main limitations of LVEF measured by echocardiography. Contrast agents and 3D echocardiography are new methods that may alleviate these potential limitations. Methods. Therefore we sought to examine the accuracy of contrast 3D echocardiography for the evaluation of LV volumes and LVEF relative to MIBI gated SPECT as an independent reference. In 43 patients addressed for chest pain, contrast 3D echocardiography (RT3DE) and MIBI gated SPECT were prospectively performed on the same day. The accuracy and the variability of LV volumes and LVEF measurements were evaluated. Results. Due to good endocardial delineation, LV volumes and LVEF measurements by contrast RT3DE were feasible in 99% of the patients. The mean LV end-diastolic volume (LVEDV) of the group by scintigraphy was 143 65 mL and was underestimated by triplane contrast RT3DE (128 60 mL; p < 0.001) and less by full-volume contrast RT3DE (132 62 mL; p < 0.001). Limits of agreement with scintigraphy were similar for triplane andfull-volume, modalities with the best results for full-volume. Results were similar for calculation of LV end-systolic volume (LVESV). The mean LVEF was 44 16% with scintigraphy and was not significantly different with both triplane contrast RT3DE (45 15%) and full-volume contrast RT3DE (45 15%). There was an excellent correlation between two different observers for LVEDV, LVESV and LVEF measurements and inter observer agreement was also good for both contrast RT3DE techniques. Conclusion. Contrast RT3DE allows an accurate assessment of LVEF compared to the LVEF measured by SPECT, and shows low variability between observers. Although RT3DE triplane provides accurate evaluation of left ventricular function, RT3DE full-volume is superior to triplane modality in patients with suspected coronary artery disease. © 2009 Cosyns et al; licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Inhibition of predator attraction to kairomones by non-host plant volatiles for herbivores: a bypass-trophic signal

    Get PDF
    Background Insect predators and parasitoids exploit attractive chemical signals from lower trophic levels as kairomones to locate their herbivore prey and hosts. We hypothesized that specific chemical cues from prey non-hosts and non-habitats, which are not part of the trophic chain, are also recognized by predators and would inhibit attraction to the host/prey kairomone signals. To test our hypothesis, we studied the olfactory physiology and behavior of a predaceous beetle, Thanasimus formicarius (L.) (Coleoptera: Cleridae), in relation to specific angiosperm plant volatiles, which are non-host volatiles (NHV) for its conifer-feeding bark beetle prey. Methodology/Principal Findings Olfactory detection in the clerid was confirmed by gas chromatography coupled to electroantennographic detection (GC-EAD) for a subset of NHV components. Among NHV, we identified two strongly antennally active molecules, 3-octanol and 1-octen-3-ol. We tested the potential inhibition of the combination of these two NHV on the walking and flight responses of the clerid to known kairomonal attractants such as synthetic mixtures of bark beetle (Ips spp.) aggregation pheromone components (cis-verbenol, ipsdienol, and E-myrcenol) combined with conifer (Picea and Pinus spp.) monoterpenes (α-pinene, terpinolene, and Δ3-carene). There was a strong inhibitory effect, both in the laboratory (effect size d = −3.2, walking bioassay) and in the field (d = −1.0, flight trapping). This is the first report of combining antennal detection (GC-EAD) and behavioral responses to identify semiochemical molecules that bypass the trophic system, signaling habitat information rather than food related information. Conclusions/Significance Our results, along with recent reports on hymenopteran parasitoids and coleopteran predators, suggest that some NHV chemicals for herbivores are part of specific behavioral signals for the higher trophic level and not part of a background noise. Such bypass-trophic signals could be of general importance for third trophic level players in avoiding unsuitable habitats with non-host plants of their prey

    Metallophilic macrophages are fully developed in the thymus of autoimmune regulator (Aire)-deficient mice

    No full text
    Copyright © Springer-Verlag 2009 Thymic metallophilic macrophages represent a significant component in the thymus physiology. Recently, we showed their presence to be dependent on functional lymphotoxin-β receptor (LTβR) signaling pathway. However, it is unknown whether the development of metallophilic macrophages also requires the Autoimmune regulator (Aire) transcription factor, as suggested by some studies for medullary thymic epithelial cells, or perhaps the presence of Aire-expressing thymic epithelial cells themselves. Therefore, we investigated the presence of metallophilic macrophages in Aire-deficient thymus. Our study shows that the metallophilic macrophages are fully developed in the Aire-deficient thymus; their development is not regulated via Aire transcription factor and does not require the presence of Aire-expressing epithelial cells. On the contrary, in alymphoplasia (ALY) mice (deficient in nuclear factor-kappaB-inducing kinase, NIK), which we used as negative control, thymic metallophilic macrophages are completely lacking, similarly as in LTβR-deficient animals. Together, these results show that the development/maintenance of thymic metallophilic macrophages is executed via LTβR circumventing the Aire transcription factor. Thus, we shed a new light on the molecular requirements for development of these cells and also show that LTβR pathway is a common developmental regulator of metallophilic macrophages in different lymphatic organs (i.e., thymus and spleen).Thymic metallophilic macrophages represent a significant component in the thymus physiology. Recently, we showed their presence to be dependent on functional lymphotoxin-beta receptor (LT beta R) signaling pathway. However, it is unknown whether the development of metallophilic macrophages also requires the Autoimmune regulator (Aire) transcription factor, as suggested by some studies for medullary thymic epithelial cells, or perhaps the presence of Aire-expressing thymic epithelial cells themselves. Therefore, we investigated the presence of metallophilic macrophages in Aire-deficient thymus. Our study shows that the metallophilic macrophages are fully developed in the Aire-deficient thymus; their development is not regulated via Aire transcription factor and does not require the presence of Aire-expressing epithelial cells. On the contrary, in alymphoplasia (ALY) mice (deficient in nuclear factor-kappaB-inducing kinase, NIK), which we used as negative control, thymic metallophilic macrophages are completely lacking, similarly as in LT beta R-deficient animals. Together, these results show that the development/maintenance of thymic metallophilic macrophages is executed via LT beta R circumventing the Aire transcription factor. Thus, we shed a new light on the molecular requirements for development of these cells and also show that LT beta R pathway is a common developmental regulator of metallophilic macrophages in different lymphatic organs (i.e., thymus and spleen).Novica M. Milićević, Živana Milićević, Miloš D. Miljković, Milica Labudović-Borović, Martti Laan, Pärt Peterson, Kai Kisand, Hamish S. Scott, Ning Qu and Jürgen Westerman
    corecore