1,962 research outputs found

    An evaluation of the Department of Health’s Health and Social Care Volunteering Fund

    Get PDF
    The Health and Social Care Volunteering Fund (HSCVF) is an innovative programme that was established in 2009 by the Department of Health (DH) to build organisational and community capacity for volunteering through a national and local grant scheme. The HSCVF has offered both funds and tailored support to health and social care projects delivered by Voluntary, Community and Social Enterprise (VCSE) organisations. The HSCVF is managed by a partnership led by Ecorys and with expertise from leading national voluntary sector organisations: Attend, Community Service Volunteers (CSV) and Primetimers. To date the HSCVF has funded a total of 157 local and national projects, of which 114 are currently live. This report presents findings from an evaluation of the HSCVF with a specific focus on the 2010/2011 national and local projects, conducted by a team from the Institute for Health & Wellbeing at Leeds Metropolitan University. It presents evidence on the extent to which, how and in what ways the HSCVF programme has built organisational and community capacity across the national and local HSCVF projects, as well as on the health and social outcomes that resulted

    An Evaluation of The Migrant Access Project Plus Final Report

    Get PDF
    The Migrant Access Project operated within West and South Leeds, 2018 until March 2020. It aimed to provide support to new and existing migrant communities to better help them integrate, and thus reduce pressure on existing services, minimising low level tensions and thereby concerns from settled communities within Leeds. Our 2018 interim report focused upon the Migrant Access Plus Project (MAPP) that was running in the Armley and Holbeck areas of the city. Our 2019 report explored the extension of the project into three additional areas as part of the second year of delivery: Beeston Hill, Little London/Hyde Park/Woodhouse and New Wortley. This final report draws together all findings and overall learning from the delivery of MAPP, following a third year of extension funding

    Thin film superfluid optomechanics

    Full text link
    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid 4^4He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates g0>2π×100g_0>2\pi \times 100 kHz and single photon cooperativities C0>10C_0>10 are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as g0>ΩMg_0>\Omega_M and opens the prospect of laser cooling a liquid into its quantum ground state.Comment: 18 pages, 6 figure

    The X-ray surface brightness distribution from diffuse gas

    Full text link
    We use simulations to predict the X-ray surface brightness distribution arising from hot, cosmologically distributed diffuse gas. The distribution is computed for two bands: 0.5-2 keV and 0.1-0.4 keV, using a cosmological-constant dominated cosmology that fits many other observations. We examine a number of numerical issues such as resolution, simulation volume and pixel size and show that the predicted mean background is sensitive to resolution such that higher resolution systematically increases the mean predicted background. Although this means that we can compute only lower bounds to the predicted level, these bounds are already quite restrictive. Since the observed extra-galactic X-ray background is mostly accounted for by compact sources, the amount of the observed background attributable to diffuse gas is tightly constrained. We show that without physical processes in addition to those included in the simulations (such as radiative cooling or non-gravitational heating), both bands exceed observational limits. In order to examine the effect of non-gravitational heating we explore a simple modeling of energy injection and show that substantial amounts of heating are required (i.e. 5 keV per particle when averaged over all baryons). Finally, we also compute the distribution of surface brightness on the sky and show that it has a well-resolved characteristic shape. This shape is substantially modified by non-gravitational heating and can be used as a probe of such energy injection.Comment: 11 pages, 11 figures, submitted to Ap

    X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries

    Full text link
    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four systems in which we had previously inferred an unusual Ne/O ratio in the absorption along the line of sight, most likely from material local to the binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U 1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously measured and consistent with the expected interstellar value. We propose that variations in the Ne/O ratio due to source variability, as previously observed in these sources, can explain the difference between the low- and high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS observation of 4U 0513-40 also shows no unusual abundance ratios in the absorption along the line of sight. We also present spectral results from a third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by an absorbed power-law + blackbody model with absorption consistent with the expected interstellar value. Finally, we present the non-detection of a fourth candidate ultracompact binary, 4U 1905+000, with an upper limit on the source luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical Journa

    The falling chain of Hopkins, Tait, Steele and Cayley

    Get PDF
    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3g/3 if the motion is nonconservative, but g/2g/2 if the motion is conservative, gg being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home camcorder is used to measure the fall of a three-dimensional version called an xyzxyz-slider. After frictional effects are corrected for, its vertical falling acceleration is found to be ax/g=0.328±0.004a_x/g = 0.328 \pm 0.004. This result agrees with the theoretical value of ax/g=1/3a_x/g = 1/3 for an ideal energy-conserving xyzxyz-slider.Comment: 17 pages, 5 figure

    Sustainable seafood using octopus as a model

    Get PDF
    The global catch of octopus and squid shows annual variability and demand is likely to increase for both locally-supplied and imported products. However, the vulnerability of seafood resources is now well known, the reliability of fisheries catch data is still unclear, management of cephalopod stocks is mostly rudimentary, and there is uncertainty and concern about their sustainability among fisheries managers, the fishing industry, retailers, researchers and consumers. Here, a new project is presented which aims to address and resolve ways to enhance the effectiveness of seafood sustainability in general, with the aid of a freely accessible identification and traceability tool linked to sophisticated databases, and using artificial intelligence, machine learning and blockchain technology, to provide an easy and reliable way to trace seafood using octopus as a model. The project is a contribution to UN Sustainable Development Goals 2, 9, 14, and 17

    Effects of a 6-month exercise program pilot study on walking economy, peak physiological characteristics, and walking performance in patients with peripheral arterial disease

    Get PDF
    The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal–Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs
    • …
    corecore