9 research outputs found

    Investigation of the Performance of the New Orleans Flood Protection System in Hurricane Katrina on August 29, 2005: Volume 1

    Get PDF
    This report presents the results of an investigation of the performance of the New Orleans regional flood protection system during and after Hurricane Katrina, which struck the New Orleans region on August 29, 2005. This event resulted in the single most costly catastrophic failure of an engineered system in history. Current damage estimates at the time of this writing are on the order of 100to100 to 200 billion in the greater New Orleans area, and the official death count in New Orleans and southern Louisiana at the time of this writing stands at 1,293, with an additional 306 deaths in nearby southern Mississippi. An additional approximately 300 people are currently still listed as “missing”; it is expected that some of these missing were temporarily lost in the shuffle of the regional evacuation, but some of these are expected to have been carried out into the swamps and the Gulf of Mexico by the storm’s floodwaters, and some are expected to be recovered in the ongoing sifting through the debris of wrecked homes and businesses, so the current overall regional death count of 1,599 is expected to continue to rise a bit further. More than 450,000 people were initially displaced by this catastrophe, and at the time of this writing more than 200,000 residents of the greater New Orleans metropolitan area continue to be displaced from their homes by the floodwater damages from this storm event. This investigation has targeted three main questions as follow: (1) What happened?, (2) Why?, and (3) What types of changes are necessary to prevent recurrence of a disaster of this scale again in the future? To address these questions, this investigation has involved: (1) an initial field reconnaissance, forensic study and data gathering effort performed quickly after the arrival of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005), (2) a review of the history of the regional flood protection system and its development, (3) a review of the challenging regional geology, (4) detailed studies of the events during Hurricanes Katrina and Rita, as well as the causes and mechanisms of the principal failures, (4) studies of the organizational and institutional issues affecting the performance of the flood protection system, (5) observations regarding the emergency repair and ongoing interim levee reconstruction efforts, and (6) development of findings and preliminary recommendations regarding changes that appear warranted in order to prevent recurrence of this type of catastrophe in the future. In the end, it is concluded that many things went wrong with the New Orleans flood protection system during Hurricane Katrina, and that the resulting catastrophe had it roots in three main causes: (1) a major natural disaster (the Hurricane itself), (2) the poor performance of the flood protection system, due to localized engineering failures, questionable judgments, errors, etc. involved in the detailed design, construction, operation and maintenance of the system, and (3) more global “organizational” and institutional problems associated with the governmental and local organizations responsible for the design, construction, operation, maintenance and funding of the overall flood protection system

    Study of Dynamic Interface Friction Model under Seismic Loading

    No full text

    New Orleans and Hurricane Katrina. IV: Orleans East Bank (Metro) Protected Basin

    No full text
    This paper addresses damage caused by Hurricane Katrina to the main Orleans East Bank protected basin. This basin represented the heart of New Orleans, and contained the main downtown area, the historic French Quarter, the Garden District, and the sprawling Lakefront and Canal Districts. Nearly half of the loss of life during this hurricane, and a similar fraction of the overall damages, occurred in this heavily populated basin. There are a number of important geotechnical lessons, as well as geo-forensic lessons, associated with the flooding of this basin. These include the difficulties associated with the creation and operation of regional-scale flood protection systems requiring federal and local cooperation and funding over prolonged periods of time. There are also a number of engineering and policy lessons regarding (1) the accuracy and reliability of current analytical methods; (2) the shortcomings and potential dangers involved in decisions that reduced short-term capital outlays in exchange for increased risk of potential system failures; (3) the difficulties associated with integrating local issues with a flood risk reduction project; and (4) the need to design and maintain levees as systems; with each of the many individual project elements being required to mesh seamlessly. These lessons are of interest and importance for similar flood protection systems throughout numerous other regions of the United States and the world

    New Orleans and Hurricane Katrina. I: Introduction, Overview, and the East Flank

    No full text
    The failure of the New Orleans regional flood protection systems, and the resultant catastrophic flooding of much of New Orleans during Hurricane Katrina, represents the most costly failure of an engineered system in U.S. history. This paper presents an overview of the principal events that unfolded during this catastrophic hurricane, and then a more detailed look at the early stages of the event as the storm first drove onshore and then began to pass to the east of the main populated areas. The emphasis in this paper is on geotechnical lessons and it also includes broader lessons with regard to the design, implementation, operation, and maintenance of major flood protection systems. This paper focuses principally on the early stages of this disaster, including the initial inundation of Plaquemines Parish along the lower reaches of the Mississippi River as Katrina made landfall, and the subsequent additional early levee breaches and erosion along the eastern flanks of the regional flood protection systems fronting Lake Borgne that resulted in the flooding of the two large protected basins of New Orleans East and St. Bernard Parish. Significant lessons learned include (1) the need for realistic assessment of risk exposure as an element of flood protection policy; (2) the importance of considering erodibility of embankment and foundation soils in levee design and construction; (3) the importance of considering all potential failure modes; and (4) the problems inherent in the construction of major regional systems over extended periods of multiple decades. These are important lessons, as they are applicable to other regional flood protection systems in other areas of the United States, and throughout much of the world

    The impact of chromosomal translocation locus and fusion oncogene coding sequence in synovial sarcomagenesis

    No full text
    Synovial sarcomas are aggressive soft-tissue malignancies that express chromosomal translocation-generated fusion genes, SS18-SSX1 or SS18-SSX2 in most cases. Here, we report a mouse sarcoma model expressing SS18-SSX1, complementing our prior model expressing SS18-SSX2. Exome sequencing identified no recurrent secondary mutations in tumors of either genotype. Most of the few mutations identified in single tumors were present in genes that were minimally or not expressed in any of the tumors. Chromosome 6, either entirely or around the fusion gene expression locus, demonstrated a copy number gain in a majority of tumors of both genotypes. Thus, by fusion oncogene coding sequence alone, SS18-SSX1 and SS18-SSX2 can each drive comparable synovial sarcomagenesis, independent from other genetic drivers. SS18-SSX1 and SS18-SSX2 tumor transcriptomes demonstrated very few consistent differences overall. In direct tumorigenesis comparisons, SS18-SSX2 was slightly more sarcomagenic than SS18-SSX1, but equivalent in its generation of biphasic histologic features. Meta-analysis of human synovial sarcoma patient series identified two tumor-gentoype-phenotype correlations that were not modeled by the mice, namely a scarcity of male hosts and biphasic histologic features among SS18-SSX2 tumors. Re-analysis of human SS18-SSX1 and SS18-SSX2 tumor transcriptomes demonstrated very few consistent differences, but highlighted increased native SSX2 expression in SS18-SSX1 tumors. This suggests that the translocated locus may drive genotype-phenotype differences more than the coding sequence of the fusion gene created. Two possible roles for native SSX2 in synovial sarcomagenesis are explored. Thus, even specific partial failures of mouse genetic modeling can be instructive to human tumor biology

    Morbidity management in the Global Programme to Eliminate Lymphatic Filariasis: a review of the scientific literature

    No full text
    corecore