290 research outputs found

    Tests of hypotheses and related problems in 2X2 tables

    Full text link
    Thesis (M.A.)--Boston Universit

    Mines and Minerals of the Western Kentucky Fluorspar District

    Get PDF
    This map shows all the known and identified mines, mineral prospects, and igneous intrusions (dikes or sills) in the Western Kentucky Fluorspar District, compiled from thousands of maps and files, creating an up-to-date, comprehensive catalog for the district. The district has been extensively mined for more than 120 years and was once the largest producer of fluorspar (fluorite) in the United States. Millions of tons of vein ore minerals (fluorite, zinc, lead, and barite) has been produced from these mines, and substantial reserves still remain. New mining and exploration activity has renewed interest in the district, and the industry will benefit from the use of this new map. Historic iron ore mines are also included because of their immediate proximity to this mapped area

    Anomalous cooling of the massive white dwarf in U Geminorum following a narrow dwarf nova outburst

    Get PDF
    We obtained Hubble GHRS medium resolution (G160M grating) phase-resolved spectroscopic observations of the prototype dwarf nova U Geminorum during dwarf nova quiescence, 13 days and 61 days following the end of a narrow outburst. The spectral wavelength ranges were centered upon three different line regions: N V (1238\AA, 1242\AA), Si III (1300\AA) and He II (1640\AA). All of the quiescent spectra at both epochs are dominated by absorption lines and show no emission features. The Si III and He II absorption line velocities versus orbital phase trace the orbital motion of the white dwarf but the N~V absorption velocities appear to deviate from the white dwarf motion. We confirm our previously reported low white dwarf rotational velocity, V sin i= 100 km/s. We obtain a white dwarf orbital velocity semi-amplitude K1=107 km/s. Using the gamma-velocity of Wade (1981) we obtain an Einstein redshift of 80.4 km/s and hence a carbon core white dwarf mass of ~1.1 Msun. We report the first subsolar chemical abundances of C and Si for U Gem with C down by 0.05 with respect to the Sun, almost certainly a result of C depletion due to thermonuclear processing. This C-depletion is discussed within the framework of a weak TNR, contamination of the secondary during the common envelope phase, and mixing of C-depleted white dwarf gas with C-depleted matter deposited during a dwarf nova event. Remarkably the Teff of the white dwarf 13 days after outburst is only 32,000K, anomalously cooler than previous early post-outburst measurements. Extensive cooling during an extraordinarily long (210 days) quiescence followed by accretion onto an out-of-equilibrium cooled degenerate could explain the lower Teff.Comment: 16 pages AAS-Latex, 4 Figures, accepted for publication in Ap

    Observations and simulations of recurrent novae: U Sco and V394 CrA

    Get PDF
    Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized

    Ultraviolet observations of LMC nova 1988

    Get PDF
    The IUE obtained ultraviolet spectra of a nova in an external galaxy. The spectral features do not seem unusual for a nova at maximum but it is hoped to be able to follow it for a long enough time to be able to study the high ionization lines that appear when the density drops to lower values (the nebular stage). A high dispersion spectrum was also obtained to assist in the line identification and to study the line of sight to the LMC 1 deg of arc away from SN 1987A

    Observations and simulations of nova Vul 1984 no. 2: A nova with ejecta rich in oxygen, neon, and magnesium

    Get PDF
    Nova Vul 1984 no. 2 was observed with IUE from Dec. 1984 through Nov. 1987. The spectra are characterized by strong lines from Mg, Ne, C, Si, O, N, and other elements. Data obtained in the ultraviolet, infrared, and optical show that this nova is ejecting material rich in oxygen, neon, and magnesium

    Optical and ultraviolet observations of nova Vul 1987

    Get PDF
    The outburst for a nova discovered in Nov. 1987 and followed since then is summarized. Although it was possible to observe it with the IUE at maximum, its ultraviolet energy faded rapidly, and after the first 2 weeks it was impossible to observe it at IUE wavelengths. It is observed to form a thick dust shell and is in the nebular stage

    Observations of classical novae in outburst

    Get PDF
    The IUE obtained ultraviolet data on novae in outburst. The characteristics of every one of the outbursts are different. Optical and infrared data on many of the same novae were also obtained. Three members of the carbon-oxygen class of novae are presented

    Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution

    Full text link
    We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry observations of the M87 jet taken during 1994-1995. Many knot regions are very highly polarized (∼40−50\sim 40-50%, approaching the theoretical maximum for optically thin synchrotron radiation), suggesting highly ordered magnetic fields. High degrees of polarization are also observed in interknot regions. While the optical and radio polarization maps share many similarities, we observe significant differences between the radio and optical polarized structures, particularly for bright knots in the inner jet, giving us important insight into the jet's radial structure. Unlike in the radio, the optical magnetic field position angle becomes perpendicular to the jet at the upstream ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases markedly at the position of the flux maxima in these knots. In contrast, the magnetic field position angle observed in the radio remains parallel to the jet in most of these regions, and the decreases in radio polarization are smaller. More minor differences are seen in other jet regions. Many of the differences between optical and radio polarimetry results can be explained in terms of a model whereby shocks occur in the jet interior, where higher-energy electrons are concentrated and dominate both polarized and unpolarized emissions in the optical, while the radio maps show strong contributions from lower-energy electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999
    • …
    corecore