23,989 research outputs found

    Irreversible thermodynamics of creep in crystalline solids

    Full text link
    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a non-hydrostatically stressed multi-component solid medium with non-conserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary

    Mechanical properties of several nickel alloys in hydrogen at elevated temperatures

    Get PDF
    Tests were performed to determine low cycle fatigue and crack growth rate properties of one iron-base and two forms of one cast nickel-base alloy. The alloys were tested in various forms and/or heat-treat conditions that are proposed for use in a high-pressure hydrogen or a hydrogen-water vapor environment. Some general conclusions can be made comparing the results of tests in a hydrogen environment with those in a hydrogen-water vapor environment. The hydrogen-water vapor environment caused a 50 percent average reduction in fatigue life, indicating extreme degradation when compared with tests conducted in air, for Incoloy 903 at 1033 K (1400 F). Crack growth rates increased significantly for all materials with increasing test temperature. A very significant increase (three orders of magnitude) in crack growth rate occurred for Incoloy 903 tested in the hydrogen-water vapor environment when compared with testing done in hydrogen along at 922 K (1200 F)

    A simulation model for wind energy storage systems. Volume 2: Operation manual

    Get PDF
    A comprehensive computer program (SIMWEST) developed for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic) is described. Features of the program include: a precompiler which generates computer models (in FORTRAN) of complex wind source/storage/application systems, from user specifications using the respective library components; a program which provides the techno-economic system analysis with the respective I/O the integration of system dynamics, and the iteration for conveyance of variables; and capability to evaluate economic feasibility as well as general performance of wind energy systems. The SIMWEST operation manual is presented and the usage of the SIMWEST program and the design of the library components are described. A number of example simulations intended to familiarize the user with the program's operation is given along with a listing of each SIMWEST library subroutine

    Beta measurements

    Get PDF
    The second year's results of the BETA project research are presented. The program is divided into two areas, aerosol modification and climatology in the trade wind region and the climatology of BETA (CO2) on remote mountain top locations. Limited data is available on the aerosol climatology of the marine free troposphere (MFT) in the trade wind region. In order to study the effects of cumulus convection on the MFT values of BETA, a cloud model was developed to simulate the evolution of a typical Pacific trade wind cumulus cloud. The stages involved in this development are outlined. The assembly of the major optical components of the lidar was made. Tests were run of the spectral bandwidth of the Synrad laser when a portion of the beam is mixed with a component which has traveled 450 meters corresponding to a delay of 1.5 microsecs. The bandwidth of the beat signal was measured to be 3 KHz. The data processing system based on a parallel processing filter bank analyzer using true time squaring detectors at each filter was completed

    Precise Atmospheric Parameters for the Shortest Period Binary White Dwarfs: Gravitational Waves, Metals, and Pulsations

    Full text link
    We present a detailed spectroscopic analysis of 61 low mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca and Mg for metal-rich extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for those white dwarfs with Teff < 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.Comment: 18 pages, 13 figures, 3 tables, accepted for publication in Ap

    A New Gravitational Wave Verification Source

    Full text link
    We report the discovery of a detached 20 min orbital period binary white dwarf. WD0931+444 (SDSS J093506.93+441106.9) was previously classified as a WD + M dwarf system based on its optical spectrum. Our time-resolved optical spectroscopy observations obtained at the 8m Gemini and 6.5m MMT reveal peak-to-peak radial velocity variations of 400 km/s every 20 min for the WD, but no velocity variations for the M dwarf. In addition, high-speed photometry from the McDonald 2.1m telescope shows no evidence of variability nor evidence of a reflection effect. An M dwarf companion is physically too large to fit into a 20 min orbit. Thus, the orbital motion of the WD is almost certainly due to an invisible WD companion. The M dwarf must be either an unrelated background object or the tertiary component of a hiearchical triple system. WD0931+444 contains a pair of WDs, a 0.32 Msol primary and a >0.14 Msol secondary, at a separation of >0.19 Rsol. After J0651+2844, WD0931+444 becomes the second-shortest period detached binary WD currently known. The two WDs will lose angular momentum through gravitational wave radiation and merge in <9 Myr. The log h ~ -22 gravitational wave strain from WD0931+444 is strong enough to make it a verification source for gravitational wave missions in the milli-Hertz frequency range, e.g. the evolved Laser Interferometer Space Antenna (eLISA), bringing the total number of known eLISA verification sources to nine.Comment: MNRAS Letters, in pres
    corecore