2,135 research outputs found
Initial test results on bolometers for the Planck high frequency instrument
We summarize the fabrication, flight qualification, and dark performance of bolometers completed at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2009. The HFI is a multicolor focal plane which consists of 52 bolometers operated at 100 mK. Each bolometer is mounted to a feedhorn-filter assembly which defines one of six frequency bands centered between 100-857 GHz. Four detectors in each of five bands from 143-857 GHz are coupled to both linear polarizations and thus measure the total intensity. In addition, eight detectors in each of four bands (100, 143, 217, and 353 GHz) couple only to a single linear polarization and thus provide measurements of the Stokes parameters, Q and U, as well as the total intensity. The measured noise equivalent power (NEP) of all detectors is at or below the background limit for the telescope and time constants are a few ms, short enough to resolve point sources as the 5 to 9 arc min beams move across the sky at 1 rpm
GPS Moving Vehicle Experiment
The Naval Research Laboratory (NRL) in the development of timing systems for remote locations, had a technical requirement for a Y code (SA/AS) Global Positioning System (GPS) precise time transfer receiver (TTR) which could be used both in a stationary mode or mobile mode. A contract was awarded to the Stanford Telecommunication Corporation (STEL) to build such a device. The Eastern Range (ER) als had a requirement for such a receiver and entered into the contract with NRL for the procurement of additional receivers. The Moving Vehicle Experiment (MVE) described in this paper is the first in situ test of the STEL Model 5401C Time Transfer System in both stationary and mobile operations. The primary objective of the MVE was to test the timing accuracy of the newly developed GPS TTR aboard a moving vessel. To accomplish this objective, a joint experiment was performed with personnel from NRL and the er at the Atlantic Undersea Test and Evaluation Center (AUTEC) test range at Andros Island. Results and discussion of the test are presented in this paper
Induced mannosidosis-excretion of oligosaccharides by locoweed-intoxicated sheep
AbstractDaily urine samples were collected from a locoweed-fed sheep, and the oligosaccharide content examined by thin-layer and liquid chromatography. An unusual pattern of urine oligosaccharides was observed, which appears to be characteristic of loco intoxication. Changes in the pattern could be correlated with the onset of visible disease, which occurred approximately 5 weeks after the typical urine sugars were first detected. HPLC showed that these sugars consisted of two homologous series of oligosaccharides containing one and two residues of 2-acetamido-2-deoxy-D-glucose, respectively
Quantitative microarray profiling of DNA-binding molecules
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)_3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of K_a values across the microarray intensity spectrum
No. 6 - 30th Anniversary Issue
With this issue of the Occasional Papers, we celebrate the 30th anniversary of the founding of the Dean Rusk Center, which bears the name of the late School of Law faculty member who served as secretary of state under Presidents John F. Kennedy and Lyndon B. Johnson from 1961 until 1969.
Our purpose in hosting the conference and lectures published in this volume was to provide a forum for developing the comprehensive new focus necessary to met the American foreign policy demands of the 21st century. In so doing, it is our intent that the advice and counsel of the former secretaries of state and speakers in this volume—each of whom has been, directly or indirectly, impacted by the life of Dean Rusk—will bring us closer to being “present at the creation” of a post-modern American foreign policy equipped to deal with the challenges ahead. We hope that this publication, under the auspices of the Center that bears his name, will have an impact that is worthy of the legacy of Dean Rusk
Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars
With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62–70 μmol m–2 s–1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200–300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed
Rabbitpox in New Zealand White Rabbits: A Therapeutic Model for Evaluation of Poxvirus Medical Countermeasures Under the FDA Animal Rule
The elimination of smallpox as an endemic disease and the obvious ethical problems with clinical challenge requires the efficacy evaluation of medical countermeasures against smallpox using the FDA Animal Rule. This approach requires the evaluation of antiviral efficacy in an animal model whose infection recapitulates the human disease sufficiently well enough to provide predictive value of countermeasure effectiveness. The narrow host range of variola virus meant that no other animal species was sufficiently susceptible to variola to manifest a disease with predictive value. To address this dilemma, the FDA, after a public forum with virologists in December 2011, suggested the development of two animal models infected with the cognate orthopoxvirus, intradermal infection of rabbits and intranasal infection of mice, to supplement the non-human primate models in use. In this manuscript, we describe the development of an intradermal challenge model of New Zealand White rabbits with rabbitpox virus (RPXV) for poxvirus countermeasure evaluation. Lethality of RPXV was demonstrated in both 9 and 16-weeks old rabbits with an LD50 < 10 PFU. The natural history of RPXV infection was documented in both ages of rabbits by monitoring the time to onset of abnormal values in clinical data at a lethal challenge of 300 PFU. All infected animals became viremic, developed a fever, exhibited weight loss, developed secondary lesions, and were euthanized after 7 or 8 days. The 16-weeks RPXV-infected animals exhibiting similar clinical signs with euthanasia applied about a day later than for 9-weeks old rabbits. For all animals, the first two unambiguous indicators of infection were detection of viral copies by quantitative polymerase chain reaction and fever at 2 and 3 days following challenge, respectively. These biomarkers provide clinically-relevant trigger(s) for initiating therapy. The major advantage for using 16-weeks NZW rabbits is that older rabbits were more robust and less subject to stress-induced death allowing more reproducible studies
Quantitative microarray profiling of DNA-binding molecules
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)_3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of K_a values across the microarray intensity spectrum
- …