2,552 research outputs found

    The energy flux into a fluidized granular medium at a vibrating wall

    Full text link
    We study the power input of a vibrating wall into a fluidized granular medium, using event driven simulations of a model granular system. The system consists of inelastic hard disks contained between a stationary and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both involving the pressure. The transition between the two occurs when waves generated at the moving wall can propagate across the system. Choosing an appropriate waveform for the vibrating wall removes one of these scalings and renders the second very simple.Comment: 5 pages, revtex, 7 postscript figure

    Temperature scaling in a dense vibro-fluidised granular material

    Get PDF
    The leading order "temperature" of a dense two dimensional granular material fluidised by external vibrations is determined. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error. The theory also predicts the scaling relations of the total dissipation in the bed reported by McNamara and Luding (PRE v 58, p 813).Comment: ReVTeX (psfrag), 5 pages, 5 figures, Submitted to PR

    Velocity correlations in dense granular gases

    Full text link
    We report the statistical properties of spherical steel particles rolling on an inclined surface being driven by an oscillating wall. Strong dissipation occurs due to collisions between the particles and rolling and can be tuned by changing the number density. The velocities of the particles are observed to be correlated over large distances comparable to the system size. The distribution of velocities deviates strongly from a Gaussian. The degree of the deviation, as measured by the kurtosis of the distribution, is observed to be as much as four times the value corresponding to a Gaussian, signaling a significant breakdown of the assumption of negligible velocity correlations in a granular system.Comment: 4 pages, 4 Figure

    Non-Gaussian velocity distributions in excited granular matter in the absence of clustering

    Full text link
    The velocity distribution of spheres rolling on a slightly tilted rectangular two dimensional surface is obtained by high speed imaging. The particles are excited by periodic forcing of one of the side walls. Our data suggests that strongly non-Gaussian velocity distributions can occur in dilute granular materials even in the absence of significant density correlations or clustering. When the surface on which the particles roll is tilted further to introduce stronger gravitation, the collision frequency with the driving wall increases and the velocity component distributions approach Gaussian distributions of different widths.Comment: 4 pages, 5 figures. Additional information at http://physics.clarku.edu/~akudrolli/nls.htm

    Clustering, Order, and Collapse in a Driven Granular Monolayer

    Full text link
    Steady state dynamics of clustering, long range order, and inelastic collapse are experimentally observed in vertically shaken granular monolayers. At large vibration amplitudes, particle correlations show only short range order like equilibrium 2D hard sphere gases. Lowering the amplitude "cools" the system, resulting in a dramatic increase in correlations leading either to clustering or an ordered state. Further cooling forms a collapse: a condensate of motionless balls co-existing with a less dense gas. Measured velocity distributions are non-Gaussian, showing nearly exponential tails.Comment: 9 pages of text in Revtex, 5 figures; references added, minor modifications Paper accepted to Phys Rev Letters. Tentatively scheduled for Nov. 9, 199

    Velocity distribution of fluidized granular gases in presence of gravity

    Get PDF
    The velocity distribution of a fluidized dilute granular gas in the direction perpendicular to the gravitational field is investigated by means of Molecular Dynamics simulations. The results indicate that the velocity distribution can be exactly described neither by a Gaussian nor by a stretched exponential law. Moreover, it does not exhibit any kind of scaling. In fact, the actual shape of the distribution depends on the number of monolayers at rest, on the restitution coefficient and on the height at what it is measured. The role played by the number of particle-particle collisions as compared with the number of particle-wall collisions is discussed

    Identification of mixed-symmetry states in an odd-mass nearly-spherical nucleus

    Get PDF
    The low-spin structure of 93Nb has been studied using the (n,n' gamma) reaction at neutron energies ranging from 1.5 to 3.0 MeV and the 94Zr(p,2n gamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at 1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states associated with the coupling of a proton hole in the p_1/2 orbit to the 2+_1,ms state in 94Mo. These assignments are derived from the observed M1 and E2 transition strengths to the symmetric one-phonon states, energy systematics, spins and parities, and comparison with shell model calculations.Comment: 5 pages, 3 figure

    Grain Dynamics in a Two-dimensional Granular Flow

    Full text link
    We have used particle tracking methods to study the dynamics of individual balls comprising a granular flow in a small-angle two-dimensional funnel. We statistically analyze many ball trajectories to examine the mechanisms of shock propagation. In particular, we study the creation of, and interactions between, shock waves. We also investigate the role of granular temperature and draw parallels to traffic flow dynamics.Comment: 17 pages, 24 figures. To appear in Phys.Rev.E. High res./color figures etc. on http://www.nbi.dk/CATS/Granular/GrainDyn.htm
    • …
    corecore