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Temperature scaling in a dense vibro-fluidised granular magrial
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The leading order “temperature” of a dense two dimensioraal-g
ular material fluidised by external vibrations is deterndin€he grain
interactions are characterised by inelastic collisions,the coeffi-
cient of restitution is considered to be closeltoso that the dissi-
pation of energy during a collision is small compared to therage
energy of a particle. An asymptotic solution is obtained rehthe
particles are considered to be elastic in the leading appetion.
The velocity distribution is a Maxwell-Boltzmann distrition in the
leading approximation. The density profile is determinecblying
the momentum balance equation in the vertical directioreralthe
relation between the pressure and density is provided byitfed
equation of state. The temperature is determined by relatie
source of energy due to the vibrating surface and the endsgy d
sipation due to inelastic collisions. The predictions & hresent
analysis show good agreement with simulation results &tgnigen-
sities where theories for a dilute vibrated granular matewith the
pressure-density relation provided by the ideal gas lasviraerror.

I. INTRODUCTION

Bangalore, 560 012, India.

tween two glass plates that are separated by a distancésligh
larger than the diameter of the spheres. The particles were fl
idised by a vibrating surface at the bottom of the bed, and the
statistics of the velocity distribution of the particlesne@b-
tained using visualisation techniques. Profiles for thesdgn

and the mean square velocity were obtained, and the parti-
cle velocity distributions were also determined at cerfzon
sitions in the bed. Both of these studies reported that tisere
an exponential dependence of the density on the height near
the top of the bed, similar to the Boltzmann distributiontfos
density of a gas in a gravitational field. However, the depen-
dence of the density deviates from the exponential behaviou
near the bottom. The dependence of the mean square veloc-
ity on the vibration frequency and amplitude were found to be
different in the two studies.

A theoretical calculation of the distribution function in a
vibro-fluidised bed was carried out by Kumarg/{[8,10]. The
limit of low dissipation, where the coefficient of restitoie
is close tol was considered. In this limit, the mean square
velocity of the particles is large compared to the mean sguar
of the velocity of the vibrating surface, and the dissipatio

Recent developments in the physics of granular maﬂer [19f energy during a binary collision is small compared to the

have illustrated that the dissipative nature of the intiras

energy of a particle. A perturbation approximation is used,

between grains can result in a variety of different phencamen Where the energy dissipation is neglected in the leadingrord
Of particular interest in recent years has been the dynamigdproximation, and the system resembles a gas at equitibriu

of vibrated granular materialﬂ ,3], which exhibit statoy

in a gravitational field. The velocity distribution functias

states as well as waves and complex patterns. In order to de-Maxwell-Boltzmann distribution, and the density decesas
scribe these diverse states of the material, it is necessary exponentially from the vibrating surface. The first order-co

derive macroscopic descriptions by averaging over theamicr
scopic details of the motion and interactions between iddiv

rection to the distribution due to dissipative effects wak c
culated using the moment expansion method, and the results

ual grains. This goal has proved elusive, however, becausewere found to be in qualitative agreement with the experi-

vibrated granular material is a driven dissipative systen
the interactions between the particles are characteriged b
loss of energy due to inelastic collisions. The statistinat
chanics framework developed for equilibrium or near equili

ments of Warr et. al[f2].

The theoretical predictionﬂ 10] were compared with pre-
vious experimental and simulation studies by McNamara and
Luding ]. They found that the theory was in good agree-

rium systems cannot be used in this case. Consequently, ph@ent with experiments for dilute beds, where the area fvacti
nomenological modelsﬂ[{I—G] have been used to describe thef the particles is low, but there were systematic deviation
dynamics of granular materials. The kinetic theories develfrom the theoretical predictions as the area fraction iases.
oped for granular f|ows[[ﬂ,8] usually assume that the systenfhis is to be expected, since the analysis assumed thathe de

is close to “equilibrium” and the velocity distribution fation
is close to the Maxwell-Boltzmann distribution.

sity is small and the pair distribution function was set dqoa
1 and therefore the pressure is related to the density by the

Experimental studies and computer simulations have reideal gas law. These assumptions become inaccurate as the

ported the presence of a uniformly fluidised state in a védarat

area fraction of the bed increases. An approximate method

bed of granular material. Luding, Herrmann and Blumén [9]for including the correction to the pair distribution fuitet
carried out ‘Event Driven’ (ED) simulations of a two dimen- was suggested by Huntlely [12].

sional system of inelastic disks in a gravitational fieldratied

Inthe present analysis, the correction to the low denséy th

from below, and obtained scaling laws for the density varia-ory of Kumaran [H,10] is determined for a vibro-fluidised bed

tions in the bed. An experimental study of a vibrated fluidise

where the coefficient of restitution is close to An asymp-

bed was carried out by Warr, Huntley and Jacqiies [2]. Theitotic analysis is used, where the dissipation is neglectéie
experimental set up consisted of steel spheres confined b&ading approximation. The leading order density and veloc
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ity profiles are determined using the momentum balance equandv is the area fraction correspondingdolf the coefficient
tion in the vertical direction. In contrast to the earlieediny  of restitution is set equal tbin the leading approximation, the
[E,@], the virial equation of state for a non-ideal two dime equation for the pressure reduces to the standard viria-equ
sional gas is used to determine the leading order density prdion of state

file. The density profile differs from the Boltzmann distribu

tion, but the velocity distribution function is still a Maxel- p = pTo[1+2g0(v)v]. )
Boltzmann distribution. The leading order temperatureeis d
termined by a balance between the source and dissipation
energy as before. The complete equilibrium pair distrdouti
function is used to determine the rate of dissipation of gyer

dhe resulting equation from Ecl] (2) for the density profilais
first order ordinary differential equation, which can beveal
using the mass conservation condition

due to inelastic collisions. The results are compared watid h 0o
sphere MD simulations, and also with earlier theoretical an lep— N ©)
simulation studies. p ’

0

whereN is the number of particles per unit width of the bed.

Note that the leading order temperatdigis still unknown

at this stage. This is determined using a balance between the
The SyStem consists of a bed of circular disks (Of diameteéource and dissipation Of energy' The source of energy due

o) in a gravitational field driven by a vibrating surface. The to particle collisions with the vibrating surface is detared

vibrating surface has a periodic amplitude function butso a ysing an equilibrium average over the increase in energy due

sumption is made regarding the form of the function. There igq particle collisions with the vibrating Surfa(ﬂ@,:l_o]
a source of energy at the vibrating surface due to partidie co

lisions with the surface, and the dissipation is due to steta 2,172 0
collisions. A balance between the two determines the “tem- So =2 P 7, (U?) QO(V)P‘
perature”, which is the mean square velocity of the paricle

The limit of low dissipation, where the coefficient of resti- Here(U?) represents the mean square velocity of the vibrat-
tution e is close tol, is considered. In this limit, it can be ing surface. The rate of dissipation of energy per unit wiglth
shown that the mean square velocity of the particles is largealculated by averaging over the energy loss over all thie col
compared to the mean square velocity of the vibrating sursions between particles and integrating over the heightef t
face. An asymptotic expansion in the parameterUZ /Tois  bed [$]
used [B]. If the source and dissipation of energy are neggect

Il. ANALYSIS

(@)

z:O.

in the leading approximation, the system resembles a gas of 3/2 i
hard disks at equilibrium in a gravitational field. The vétgpc Do = Vro(l—e*)T, /dz g0 (v) p*. (8)
distribution function is a Maxwell-Boltzmann distributicat 0
equilibrium o )
Note that theyy appearing inSp and Dy is the Enskog factor
1 u? which accounts for the increase in the frequency of colfisio
F(u) = 0Ty P <_2_TO)’ (1) for hard disks at high densities. The temperaffif&an now

be determined from the relation
whereTy is the leading order temperature. The density profile
is determined by solving the momentum balance equation in So = Dy 9

the vertical direction ) ) ] o
An analytical solution to the density variation E. (2)can b

@ —pg =0, 2) determined in the low density limit using the equation ofesta
0z for an ideal gas for the pressuﬂs [8].
wherep is the pressure is the density (number of particles N
per area) and is the acceleration due to gravity. For a gas at p= 29 exp <_%> (10)
equilibrium, the pressure is related to the density by thialvi To To
iesquatlon of state, which in the case of inelastic circulaksli where the leading order temperature is given by,
1+e 4v2 <U2>
- To= ————. 11
p =T [ 5~ T (1+e)go(v) V} : 3 0 T Ned— ) (11)

whereg, (v) is the pair distribution function at contact, which In the low-density limit the density decays exponentialtynh
for circular disks is given by[[}3] the bottom of the bed. At higher densities the solution to the

density variation is no longer exponential throughout, hasl
1 to be obtained numerically by an iterative scheme. However,

V3
go(v) = 16(1 — v)2 [16 — - 4(1 — V)J ’ ) at large distances from the bottom, the bed is dilute and the



ideal gas law holds good, hence the decay is exponential, eve

though near the bottom it is not. This gives a convenient-star 0.025
ing point for the numerical integration fromfanite height,

above which we assume the asymptotic solutior+{ o) to

be given by an exponential decay known to within two unde- ‘
termined constants. A value for the density and the tempera- 0.02 1
ture is assumed at this height and the integration is caoti¢d

up to the vibrating platex(= 0). The complete density profile

is obtained by combining the numerical and the asymptotic so 0.015
lutions. If the conditions Eq[]6) and Eq] (9) are not satikfie '
after one such integration, a new value is determined for the,

density and temperature using the Newton-Raphson method,

and the iteration is repeated till convergence. In casesavhe 0.01
the convergence is poor, the solution is obtaineddnytinuing

a low density solution in a parameter suchés or Uy.

Viscous dissipation: The above analysis can be easily ex-
tended to the case of dissipation purely due to viscous drag.
The expression for the source of energy remains the same as
given by Eq. [I?). A drag law given by; = —pu; is assumed.

0.005

The total leading order rate of dissipation per unit width wi 0 '
then be 0 100 200 300 400 500 600
o0 Z/O'
Dpo = M/dz P/du F(u)u-u FIG. 1. Exponential decay of packing fraction) (with a nor-
0 malised height4/o) at low densities. The predictions of the present
=2uNTy (12) analysis (solid line) and the low density theory (dotte@)iof [[§] is

compared with simulation (points). Both the predictione aearly
Unlike Eq. (8), the leading order dissipation is the same foridentical. Here¢ = 0.3, No = 3, g = 1, andUp = 6.
the low density and the high density cases. Nevertheless, th
density profile has to be obtained numerically in the manner

outlined above, with Eqm2) substituted for Eﬁ' (8)in EB) ( [@] but a systematic deviation was observed at high dessiti

in all the cases. This deviation is captured in the presedt an
ysis. The leading order dissipation at low densities in theé b

Ill. SIMULATION AND RESULTS 77
is given by [B]

The hard sphere molecular dynamics (MD), also known as JT N
event driven (ED) method][9] is used for the simulations ef th Do = 5~ (1—e”)N7ogy/To. (13)
vibro-fluidised bed. Periodic boundary conditions are ured
the horizontal direction and the vibrating surface at thiedm ~ In [[LJ] the total dissipation obtained from the simulatioasw
has a sawtooth form for the amplitude function. The simula-normalised by a factor taken out from this leading orderidiss
tions are carried out only for the case of inelastic collisio  pation and a non dimensional number was defined as
since the viscous drag requires a different treatment than t
ED method. Cpp = Do ) (14)

The density profiles obtained using the present analysis, as (1—e)N20g+\/To/2
well as the earlier low density approximations of Kumaran ) . ) )
[B], are compared with the simulation results in F[gs. 1 nd 2The scaling of this factor with the height of the center of mas
It is seen that the density profiles of the present analysis ar(2) above the position at rest{) was studied. This factor
in good agreement with the simulation results even when th#as found out for different parameter sets by varying the bot
density near the bottom of the bed becomes large, while thgm wall velocity U, over several decades such that the bed
profiles from the low density approximation have significantis taken from a densely packed regime to a very low density
errors. Fig[]3 shows the nature of the density profile in the€gime. They chose a central data set and varied the parame-
high density limit in the case of dissipation due to viscousters one atatime. ltwas found that in all the cases congidere
drag. Here too the present analysis gives reasonable valule scaling relation collapsed to a single curve. The cepdra
for packing fraction near the bottom, while the low density ameter set has the following valuds= 3.2,0 = 1, g = 1,
theory predicts physically incorrect values. e=0.95. o _

In a recent work, McNamara and LudingJ11] reported the The present analysis is valid when = Us/Ty < 1
scaling of dissipation with the center of mass obtained fronnd when the frequency of particle-particle collision isafmu
simulations. The results agreed with the low density thebry 9reater than the frequency of particle-wall collisions.can
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FIG. 2. Deviation of the density profile from the exponentat FIG. 3. Deviation of the density profile from the exponentat
cay at high densities in the case of dissipation due to itielaslli- cay at high densities in the case of dissipation due to visdvag.

sions. The simulation result (points) is captured by ths@neanal-  The present analysis (solid line) gives physically plalesitalues for
ysis (solid line) which is lower than the exponential decdgtled  the packing fraction near the bottom, while the low dendiiyory
line) of the low density theory of[[8] near the bottom of thedbe (dotted line) of [b] predicts values higher than the maximzlosed
Heree = 0.3, No = 3,¢g =1, andU, = 1. packing. Here = 0.2, No = 20, g = 20, u = 0.1, andUy = 5.

be shown that in the leading order the ratio of the frequency In Fig. |}, the apparent mismatch with ‘e-’ is not a discrep-
of particle-particle collisions to the frequency partigiall ancy with the model, but has got to do with the formula cho-
collisions isv/2m No. Hence the present analysis will hold sen used in|E1] for the normalisation of the dissipatioidac
good whenNo > 1/v/27. The central set corresponds to Cypp. They had chosen to normalise the dissipation by a fac-
e = 0.35, No = 3.2 and therefore we expect the present analtor (1 — ¢). While this might have given a better fit for high
ysis to hold good for this case. Most of the parameter setdensities (low center of mass), the correct factor for vewy |
used in ] also fall within the limits of the theory derived densities i5(1 — ¢?) as given by Eq.3). The difference is
here. more pronounced in the case of< 1, which, here, has a

Fig.[4 shows the theoretical predictions of the total dissip valuee = 0.75. A close inspection of the curves ‘e-’ in Fig. 4
tion for the different cases reported in Fig. 211]. ltene-  and Fig[p show that the theory and simulation do indeed agree
pared with the results of two simulations in Fjg. 5. It is seenwith each other.
that the present analysis correctly predicts the lowerirth® We also note here that the data taken from the reported sim-
coefficientC),, at high densities. This reduction in the dissi- ulation ] is for asymmetric sawtooth vibration, whereas
pation from the constant value at low densities is the nefires simulation is for the symmetric sawtooth. Both these give
of two opposing factors: (i) decrease in the density from thesimilar results for the scaling @,,. Also the theoretical pre-
exponential behaviour near the vibrating bottom (see[lBi,g. 2 dictions for the symmetric and the asymmetric sawtooth are
hence reducing the total value of the dissipation, andri) i identical, indicating that the form of the bottom wall vilican
crease in frequency of collisions at high densities, insirea  does not affect the scaling of the dissipation with the aeofte
the dissipation. mass.

Itis also seen that not all the theoretical predictionsaquske
on to a curve as is the case with the data from the simulation.
In two of the cases the theory does not agree with the simula- IV. CONCLUSION
tions because (i) in one the value of the perturbation pat@me
is high (€ = 1.73) and the leading order theory is valid only  |n summary, a theory to describe the state of a vibro-
for low ¢, and (ii) in the other case the value®tr = 0.65is  fluidised bed in the dense limit was derived. This is différen
low. from the earlier theory of Kumaraﬁl 10], which is valid for
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FIG. 4. Theoretical scaling of the normalised dissipatioh,{ FIG. 5. Scaling of the normalised dissipation with the cenfe

against the center of mask)(above the position at resk() for the mass: Predictions from the present analysis is comparedu thvit
different cases reported ip |11]. All except two—(N+) with= 1.73 results from our simulations and the reported resulty ifj. [The
and (N-) withNo = 0.65 collapse on to a single curve in the lin- linear portion of all the curves from theory, except two] fah the
ear region. The parameters indicated corresponly te 16 (N+), solid line denoted as ‘Theory’. The two exceptions are disosm. A
N = 0.65 (N-), g = 25 (g+), g = 0.04 (g-), e = 0.99 (e+), set of points correspond to the simulation data with parametiues
e = 0.75 (e-), rest of the parameters being same as the one in th& = 16 (N+), N = 0.65 (N-), g = 25 (g+), g = 0.04 (g-),
central set, which has the following valuds= 3.2,0 = 1,9 = 1, e = 0.99 (e+),e = 0.75 (e-); rest of the parameters in a set being
e = 0.95. the same as the one in the central set, which has the folloveilugs
N=320=1,9g=1,e=0.95.
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