205 research outputs found

    Backcasting energy futures using industrial ecology

    Full text link
    Backcasting has been widely used for developing energy futures. This paper explores the potential for using industrial ecology to guide the development of energy futures within a backcasting framework. Building on the backcasting work of Robinson [1], a seven step method is presented to embed industrial ecology principles within the development and assessment of future scenarios and transition paths toward them. The approach is applied to the case of backcasting regional energy futures in the Latrobe Valley, near Melbourne, Australia. This region has substantial brown coal deposits which are currently mined and used in coal-fired power stations to generate electricity. Bounded by a sustainability vision for the region in a carbon-constrained world, regional industrial ecologies in 2050 were backcast around three themes: bio-industries and renewables (no coal usage); electricity from coal with carbon capture and storage (low to high coal usage); and coal to products such as hydrogen, ammonia, diesel, methanol, plastics and char (demonstrating medium to high overall coal use relative to current levels). Potential environmental, technological, socio-political and economic impacts of each scenario across various life cycle stages were characterised. Results offer a platform for regional policy development to underpin deliberation on a preferred future by the community, industry and other stakeholders. Industrial ecology principles were found to be useful in backcasting for creatively articulating alternative futures featuring industrial symbiosis. However, enabling the approach to guide implementation of sustainable transition pathways requires further development and would benefit from integration within the Strategic Sustainable Development framework of Robèrt et al. [2]. © 2010 Elsevier Inc

    Shifting new media: from content to consultancy, from heterarchy to hierarchy

    Get PDF
    This is a detailed case history of one of London’s iconic new media companies, AMX Studios. Some of the changes in this firm, we assume, are not untypical for other firms in this sector. Particularly we want to draw attention to two transformations. The first change in AMX and in London’s new media industry more generally refers to the field of industrial relations. What can be observed is a shift from a rather heterarchical towards a more hierarchical organized new media industry, a shift from short-term project networks to long-term client dependency. The second change refers to new media products and services. We want to argue for a shift from cool content production towards consultancy and interactive communications solutions

    Влияние CaO на синтез и микроструктуру керамики на основе бората алюминия

    Get PDF
    Осуществлен синтез бората алюминия на основе природных сырьевых материалов, изучено влияние добавки CaO на структуру и свойства материала. Было выявлено, что введение CaO в состав исходной сырьевой смеси способствует формированию игольчатых кристаллов и увеличению выхода фазы бората алюминия, а также снижению плотности материала. Показано, что двухстадийный обжиг позволяет повысить прочность образцов с добавкой CaO с сохранением низкой плотности

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    (Phospho)proteomic profiling of microsatellite unstable CRC cells reveals alterations in nuclear signaling and cholesterol metabolism caused by frameshift mutation of NMD regulator UPF3A

    Get PDF
    DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells

    Current european regulatory perspectives on insulin analogues

    Get PDF
    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions
    corecore