7,426 research outputs found

    Quantification of contaminants associated with LDEF

    Get PDF
    The quantification of contaminants on the Long Duration Exposure Facility (LDEF) and associated hardware or tools is addressed. The purpose of this study was to provide a background data base for the evaluation of the surface of the LDEF and the effects of orbital exposure on that surface. This study necessarily discusses the change in the distribution of contaminants on the LDEF with time and environmental exposure. Much of this information may be of value for the improvement of contamination control procedures during ground based operations. The particulate data represents the results of NASA contractor monitoring as well as the results of samples collected and analyzed by the authors. The data from the tapelifts collected in the Space Shuttle Bay at Edwards Air Force Base and KSC are also presented. The amount of molecular film distributed over the surface of the LDEF is estimated based on measurements made at specific locations and extrapolated over the surface area of the LDEF. Some consideration of total amount of volatile-condensible materials available to form the resultant deposit is also presented. All assumptions underlying these estimates are presented along with the rationale for the conclusions. Each section is presented in a subsection for particles and another for molecular films

    Migration and generation of contaminants from launch through recovery: LDEF case history

    Get PDF
    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed

    Natural resources of Lake Earl and Smith River Delta

    Get PDF
    The Lake Earl/Smith River Delta area is a key coastal wetland situated in northern California. The Lake and Delta have retained much of their value to wildlife and serve as an important link in a chain of such wetlands that extend southward along the Pacific Ocean from Alaska to South America. Millions of water-associated birds of the Pacific Flyway utilize these areas as feeding and resting stops along their migration paths. In California, these wetlands also serve as a significant portion of the available wintering grounds for a major share of the birds within the flyway. The Smith River is also one of the State's most productive salmon and steelhead streams. Anadromous fish produced here provide thousands of angler use days to sport fishermen and contribute substantially to the commercial fishing catch off the northern coast. Because of the importance of coastal wetlands to the fish and wildlife of California, the Department of Fish and Game has initiated a high priority statewide inventory and assessment of these wetlands. This publication is an integral part of that program. This report identifies specific resources and uses; directs attention to problems; and recommends courses of action needed to insure resource protection. It is intended as a guide for citizens, planners, administrators and other interested in the use and development of California's coastal land and waters. (132pp.

    Effect of trail bifurcation asymmetry and pheromone presence or absence on trail choice by Lasius niger ants

    Get PDF
    During foraging, ant workers are known to make use of multiple information sources, such as private information (personal memory) and social information (trail pheromones). Environmental effects on foraging, and how these interact with other information sources, have, however, been little studied. One environmental effect is trail bifurcation asymmetry. Ants forage on branching trail networks and must often decide which branch to take at a junction (bifurcation). This is an important decision, as finding food sources relies on making the correct choices at bifurcations. Bifurcation angle may provide important information when making this choice. We used a Y-maze with a pivoting 90° bifurcation to study trail choice of Lasius niger foragers at varying branch asymmetries (0°, [both branches 45° from straight ahead], 30° [branches at 30° and 60° from straight ahead], 45°, 60° and 90° [one branch straight ahead, the other at 90°]). The experiment was carried out either with equal amounts of trail pheromone on both branches of the bifurcation or with pheromone present on only one branch. Our results show that with equal pheromone, trail asymmetry has a significant effect on trail choice. Ants preferentially follow the branch deviating least from straight, and this effect increases as asymmetry increases (47% at 0°, 54% at 30°, 57% at 45°, 66% at 60° and 73% at 90°). However, when pheromone is only present on one branch, the graded effect of asymmetry disappears. Overall, however, there is an effect of asymmetry as the preference of ants for the pheromone-marked branch over the unmarked branch is reduced from 65%, when it is the less deviating branch, to 53%, when it is the more deviating branch. These results demonstrate that trail asymmetry influences ant decision-making at bifurcations and that this information interacts with trail pheromone presence in a non-hierarchical manner

    Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Get PDF
    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies

    Millimeter wave transmission studies of YBa2Cu3O7-delta thin films in the 26.5 to 40.0 GHz frequency range

    Get PDF
    Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c

    Electromagnetic Casimir piston in higher dimensional spacetimes

    Full text link
    We consider the Casimir effect of the electromagnetic field in a higher dimensional spacetime of the form M×NM\times \mathcal{N}, where MM is the 4-dimensional Minkowski spacetime and N\mathcal{N} is an nn-dimensional compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed cylinder with the same cross section is investigated. Different combinations of perfectly conducting boundary conditions and infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature regime and the low temperature regime are investigated for the case where the cross section of the cylinder in MM is large. It is found that if the separation between the plates is much smaller than the size of N\mathcal{N}, the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in the (4+n)(4+n)-dimensional Minkowski spacetime. However, if the size of N\mathcal{N} is much smaller than the separation between the plates, the leading term of the Casimir force is 1+h/21+h/2 times the Casimir force on a pair of large parallel plates in the 4-dimensional Minkowski spacetime, where hh is the first Betti number of N\mathcal{N}. In the limit the manifold N\mathcal{N} vanishes, one does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if hh is nonzero.Comment: 22 pages, 4 figure

    Compression modulus of macroscopic fiber bundles

    Full text link
    We study dense, disordered stacks of elastic macroscopic fibers. These stacks often exhibit non-linear elasticity, due to the coupling between the applied stress and the internal distribution of fiber contacts. We propose a theoretical model for the compression modulus of such systems, and illustrate our method by studying the conical shapes frequently observed at the extremities of ropes and other fiber structures. studying the conical shapes frequently observed at theextremities of ropes and other fiber structures
    • …
    corecore