1,152 research outputs found

    Microgeographic Variation in Response of Red-Eared Slider (Trachemys scripta elegans) Embryos to Similar Incubation Environments

    Get PDF
    We examined site-specific variation in the response of red-eared slider (Trachemys elegans) embryos exposed to similar incubation environments, and collected at five nearby sites central Illinois. Overall, site was not a significant source of variance in change in egg mass during bation, in hatchling wet mass, and in hatchling carapace length. However, site was a significant source variance in incubation period. Nonetheless, significant site-specific differences in each trait were in pairwise comparisons. The actual difference between extremes was small. Eggs from the site longest incubation period also gained the most water during incubation. Our study has important cations for future studies of geographic variation in the physiological response of embryos to incubation environments. Comparisons between eggs and embryos from geographically distant sites would benefit inclusion of as many clutches as possible. Larger numbers of clutches reduce the possibility that ferences between geographically distant regions are due to maternal differences rather than region-differences. Studies comparing embryonic responses from geographically distant regions would be strengthened by including turtles from as many local collecting sites for each region as possible. Sampling site per region may be inadequate because any geographic variation in embryonic response could well be due to undetected local site-specific differences

    Expression profiling of snoRNAs in normal hematopoiesis and AML

    Get PDF
    Key Points A subset of snoRNAs is expressed in a developmental- and lineage-specific manner during human hematopoiesis. Neither host gene expression nor alternative splicing accounted for the observed differential expression of snoRNAs in a subset of AML.</jats:p

    Decades of field data reveal that turtles senesce in the wild

    Get PDF
    Lifespan and aging rates vary considerably across taxa; thus, understanding the factors that lead to this variation is a primary goal in biology and has ramifications for understanding constraints and flexibility in human aging. Theory predicts that senescence—declining reproduction and increasing mortality with advancing age—evolves when selection against harmful mutations is weaker at old ages relative to young ages or when selection favors pleiotropic alleles with beneficial effects early in life despite late-life costs. However, in many long-lived ectotherms, selection is expected to remain strong at old ages because reproductive output typically increases with age, which may lead to the evolution of slow or even negligible senescence. We show that, contrary to current thinking, both reproduction and survival decline with adult age in the painted turtle, Chrysemys picta, based on data spanning \u3e20 y from a wild population. Older females, despite relatively high reproductive output, produced eggs with reduced hatching success. Additionally, age-specific mark–recapture analyses revealed increasing mortality with advancing adult age. These findings of reproductive and mortality senescence challenge the contention that chelonians do not age and more generally provide evidence of reduced fitness at old ages in nonmammalian species that exhibit long chronological lifespans

    The Physiological Basis of Geographic Variation in Rates of Embryonic Development within a Widespread Lizard Species

    Get PDF
    The duration of embryonic development (e.g., egg incubation period) is a critical life‐history variable because it affects both the amount of time that an embryo is exposed to conditions within the nest and the seasonal timing of hatching. Variation in incubation periods among oviparous reptiles might result from variation in either the amount of embryogenesis completed before laying or the subsequent developmental rates of embryos. Selection on incubation duration could change either of those traits. We examined embryonic development of fence lizards (Sceloporus undulatus) from three populations (Indiana, Mississippi, and Florida) that occur at different latitudes and therefore experience different temperatures and season lengths. These data reveal countergradient variation: at identical temperatures in the laboratory, incubation periods were shorter for lizards from cooler areas. This variation was not related to stage at oviposition; eggs of all populations were laid at similar developmental stages. Instead, embryonic development proceeded more rapidly in cooler‐climate populations, compensating for the delayed development caused by lower incubation temperatures in the field. The accelerated development appears to occur via an increase in heart mass (and, thus, stroke volume) in one population and an increase in heart rate in the other. Hence, superficially similar adaptations of embryonic developmental rate to local conditions may be generated by dissimilar proximate mechanisms

    Consistent Nest Site Selection by Turtles Across Habitats With Varying Levels of Human Disturbance

    Get PDF
    Human disturbance impacts the breeding behavior of many species, and it is particularly important to understand how these human-caused changes affect vulnerable taxa, such as turtles. Habitat alteration can change the amount and quality of suitable nesting habitat, while human presence during nesting may influence nesting behavior. Consequently, both habitat alteration and human presence can influence the microhabitat that females choose for nesting. In the summer of 2019, we located emydid turtle nests in east-central Alabama, USA, in areas with varying levels of human disturbance (high, intermediate, low). We aimed to determine whether turtles selected nest sites based on a range of microhabitat variables comparing maternally selected natural nests to randomly chosen artificial nests. We also compared nest site choice across areas with different levels of human disturbance. Natural nests had less variance in canopy openness and average daily mean and minimum temperature than artificial nests, but microhabitat variables were similar across differing levels of disturbance. Additionally, we experimentally quantified nest predation across a natural to human-disturbed gradient. Nest predation rates were higher in areas with low and intermediate levels of disturbance than in areas with high human disturbance. Overall, these results show that turtles are not adjusting their choices of nest microhabitat when faced with anthropogenic change, suggesting that preserving certain natural microhabitat features will be critical for populations in human-disturbed areas

    Apparent horizons in simplicial Brill wave initial data

    Get PDF
    We construct initial data for a particular class of Brill wave metrics using Regge calculus, and compare the results to a corresponding continuum solution, finding excellent agreement. We then search for trapped surfaces in both sets of initial data, and provide an independent verification of the existence of an apparent horizon once a critical gravitational wave amplitude is passed. Our estimate of this critical value, using both the Regge and continuum solutions, supports other recent findings.Comment: 7 pages, 6 EPS figures, LaTeX 2e. Submitted to Class. Quant. Gra

    Constant Crunch Coordinates for Black Hole Simulations

    Get PDF
    We reinvestigate the utility of time-independent constant mean curvature foliations for the numerical simulation of a single spherically-symmetric black hole. Each spacelike hypersurface of such a foliation is endowed with the same constant value of the trace of the extrinsic curvature tensor, KK. Of the three families of KK-constant surfaces possible (classified according to their asymptotic behaviors), we single out a sub-family of singularity-avoiding surfaces that may be particularly useful, and provide an analytic expression for the closest approach such surfaces make to the singularity. We then utilize a non-zero shift to yield families of KK-constant surfaces which (1) avoid the black hole singularity, and thus the need to excise the singularity, (2) are asymptotically null, aiding in gravity wave extraction, (3) cover the physically relevant part of the spacetime, (4) are well behaved (regular) across the horizon, and (5) are static under evolution, and therefore have no ``grid stretching/sucking'' pathologies. Preliminary numerical runs demonstrate that we can stably evolve a single spherically-symmetric static black hole using this foliation. We wish to emphasize that this coordinatization produces KK-constant surfaces for a single black hole spacetime that are regular, static and stable throughout their evolution.Comment: 14 pages, 9 figures. Formatted using Revtex4. To appear Phys. Rev. D 2001, Added numerical results, updated references and revised figure

    Comparative Toxicity of Diphacinone to Northern Bobwhite (\u3ci\u3eColinus virginianus\u3c/i\u3e) and American Kestrels (\u3ci\u3eFalco sparverius\u3c/i\u3e)

    Get PDF
    The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be about 20 times greater to American kestrels (LD50=97 mg/kg) than to northern bobwhite (LD50=2,014 mg/kg). Several precise and sensitive clotting assays (prothrombin time, Russell’s Viper venom time, thrombin clotting time) were adapted for use in these species, and this combination of assays is recommended to detect effects of diphacinone and other rodenticides on coagulation. Oral administration of diphacinone over a range of doses (sublethal to the extrapolated LD15) prolonged prothrombin time and Russell’s Viper venom time within 24 to 48 hrs post-exposure. Prolongation of in vitro clotting time reflects impaired coagulation complex activity and was detected before or at the onset of overt signs of toxicity and lethality. These data will assist in the development of a pharmacodynamic model to assess and predict rodenticide toxicity to non-target avian species
    corecore