8,528 research outputs found

    Untwisting of a cholesteric elastomer by a mechanical field

    Full text link
    A mechanical strain field applied to a monodomain cholesteric elastomer will unwind the helical director distribution. There is an analogy with the classical problem of an electric field applied to a cholesteric liquid crystal, but with important differences. Frank elasticity is of minor importance unless the gel is very weak. The interplay is between director anchoring to the rubber elastic matrix and the external mechanical field. Stretching perpendicular to the helix axis induces the uniform unwound state via the elimination of sharp, pinned twist walls above a critical strain. Unwinding through conical director states occurs when the elastomer is stretched along the helical axis.Comment: 4 pages, RevTeX 3 style, 3 EPS figure

    Photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films

    Get PDF
    The response is reported of thin films of YBa2Cu3O(7-delta) with either a very grainy or a smooth epitaxial morphology to visible radiation. SrTiO3 substrates were employed for both types of films. The grainy films were formed by sequential multi-layer electron beam evaporation while the epitaxial films were formed by laser ablation. Both films were patterned into H shaped detectors via a negative photolithographic process employing a Br/ethanol etchant. The bridge region of the H was 50 microns wide. The patterned films formed by laser ablation and sequential evaporation had critical temperatures of 74 K and 72 K respectively. The bridge was current biased and illuminated with chopped He-Ne laser radiation and the voltage developed in response to the illumination was measured. A signal was detected only above the critical temperature and the peak of the response coincided with the resistive transition for both types of films although the correspondence was less exact for the grainy film. The details of the responses and their analysis are presented

    Electromagnetic Casimir piston in higher dimensional spacetimes

    Full text link
    We consider the Casimir effect of the electromagnetic field in a higher dimensional spacetime of the form M×NM\times \mathcal{N}, where MM is the 4-dimensional Minkowski spacetime and N\mathcal{N} is an nn-dimensional compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed cylinder with the same cross section is investigated. Different combinations of perfectly conducting boundary conditions and infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature regime and the low temperature regime are investigated for the case where the cross section of the cylinder in MM is large. It is found that if the separation between the plates is much smaller than the size of N\mathcal{N}, the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in the (4+n)(4+n)-dimensional Minkowski spacetime. However, if the size of N\mathcal{N} is much smaller than the separation between the plates, the leading term of the Casimir force is 1+h/21+h/2 times the Casimir force on a pair of large parallel plates in the 4-dimensional Minkowski spacetime, where hh is the first Betti number of N\mathcal{N}. In the limit the manifold N\mathcal{N} vanishes, one does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if hh is nonzero.Comment: 22 pages, 4 figure

    The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?

    Full text link
    SDSS J080434.20+510349.2 is the WZ type binary that displayed rare outburst in 2006 (Pavlenko et al., 2007). During the long-lasting tail of the late stage of the outburst binary shown the two-humped or four-humped profile of the orbital light modulation. The amplitude of orbital light curve decreased while the mean brightness decreased, more over that occurred ∼\sim 10 times faster during the fast outburst decline in respect to the late quiet state of slow outburst fading. There were no white dwarf pulsations detected neither 1 - 1.5 months prior to the outburst nor in 1.5 - 2 months after the 2006 outburst in this system. However the strong non-radial pulsations with period 12.6 minutes and mean amplitude of 0.05^m were first detected in V band with 2.6-m Shajn mirror telescope of the Crimean astrophysical observatory in ~ 8 months after the outburst. The evolution of pulsations over two years in 2006 - 2008 is considered. It is supposed that pulsations first appeared when the cooling white dwarf (after the outburst) entered the instability strip although the possibility of temporary lack of pulsations at some occasions also could not be excluded.Comment: Submitted to Proceedings of 16th European White Dwarf Workshop (EUROWD08

    Semi-soft Nematic Elastomers and Nematics in Crossed Electric and Magnetic Fields

    Get PDF
    Nematic elastomers with a locked-in anisotropy direction exhibit semi-soft elastic response characterized by a plateau in the stress-strain curve in which stress does not change with strain. We calculate the global phase diagram for a minimal model, which is equivalent to one describing a nematic in crossed electric and magnetic fields, and show that semi-soft behavior is associated with a broken symmetry biaxial phase and that it persists well into the supercritical regime. We also consider generalizations beyond the minimal model and find similar results.Comment: 4 pages, 3 figure

    Mapping the G-structures and supersymmetric vacua of five-dimensional N=4 supergravity

    Get PDF
    We classify the supersymmetric vacua of N=4, d=5 supergravity in terms of G-structures. We identify three classes of solutions: with R^3, SU(2) and generic SO(4) structure. Using the Killing spinor equations, we fully characterize the first two classes and partially solve the latter. With the N=4 graviton multiplet decomposed in terms of N=2 multiplets: the graviton, vector and gravitino multiplets, we obtain new supersymmetric solutions corresponding to turning on fields in the gravitino multiplet. These vacua are described in terms of an SO(5) vector sigma-model coupled with gravity, in three or four dimensions. A new feature of these N=4 vacua, which is not seen from an N=2 point of view, is the possibility for preserving more exotic fractions of supersymmetry. We give a few concrete examples of these new supersymmetric (albeit singular) solutions. Additionally, we show how by truncating the N=4, d=5 set of fields to minimal supergravity coupled with one vector multiplet we recover the known two-charge solutions.Comment: 31 pages, late
    • …
    corecore