64 research outputs found

    Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers

    Full text link
    The guided modes of sub-wavelength diameter air-clad optical fibers exhibit a pronounced evanescent field. The absorption of particles on the fiber surface is therefore readily detected via the fiber transmission. We show that the resulting absorption for a given surface coverage can be orders of magnitude higher than for conventional surface spectroscopy. As a demonstration, we present measurements on sub-monolayers of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) molecules at ambient conditions, revealing the agglomeration dynamics on a second to minutes timescale.Comment: 4 pages, Fig.1a corrected y-axis, p.2 minor text changes to facilitate the understanding of eq. 4 and

    Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength

    Full text link
    Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and may lead to technical applications. Here, we study, over a large temperature range, the thermalization dynamics due to far-field heat radiation of an individual, deterministically produced silica fiber with a predetermined shape and a diameter smaller than the thermal wavelength. The temperature change of the subwavelength-diameter fiber is determined through a measurement of its optical path length in conjunction with an ab initio thermodynamic model of the fiber structure. Our results show excellent agreement with a theoretical model that considers heat radiation as a volumetric effect and takes the emitter shape and size relative to the emission wavelength into account

    Speleothem Paleoclimatology for the Caribbean, Central America, and North America

    Get PDF
    Speleothem oxygen isotope records from the Caribbean, Central, and North America reveal climatic controls that include orbital variation, deglacial forcing related to ocean circulation and ice sheet retreat, and the influence of local and remote sea surface temperature variations. Here, we review these records and the global climate teleconnections they suggest following the recent publication of the Speleothem Isotopes Synthesis and Analysis (SISAL) database. We find that low-latitude records generally reflect changes in precipitation, whereas higher latitude records are sensitive to temperature and moisture source variability. Tropical records suggest precipitation variability is forced by orbital precession and North Atlantic Ocean circulation driven changes in atmospheric convection on long timescales, and tropical sea surface temperature variations on short timescales. On millennial timescales, precipitation seasonality in southwestern North America is related to North Atlantic climate variability. Great Basin speleothem records are closely linked with changes in Northern Hemisphere summer insolation. Although speleothems have revealed these critical global climate teleconnections, the paucity of continuous records precludes our ability to investigate climate drivers from the whole of Central and North America for the Pleistocene through modern. This underscores the need to improve spatial and temporal coverage of speleothem records across this climatically variable region

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Last glacial millennial-scale hydro-climate and temperature changes in Puerto Rico constrained by speleothem fluid inclusion δ18^{18}O and δ2^{2}H values

    Get PDF
    We present speleothem fluid inclusion δ18Of and δ2Hf values from Larga Cave, Puerto Rico, that cover the interval between 46.2 and 15.3 ka on the millennial scale, including the Last Glacial Maximum (LGM) and several stadial and interstadial cycles. The data set can be divided in two main clusters of stable isotope compositions of the fluid inclusion water with respect to the global meteoric water line (GMWL), which coincide with strong variations in the water content of the stalagmite. In particular, this clustering is found to be climate related, where one cluster comprises samples from cold and dry periods, such as the Heinrich and Greenland stadials (HSs and GSs), as well as parts of the LGM, which exhibit very high δ18Of and δ2Hf values. We interpret this enrichment as being caused by evaporation inside the cave due to enhanced cave ventilation during these colder and drier times. In contrast, in most samples corresponding to warmer and wetter Greenland interstadials (GIs), but also for some from HS 2 and 3, the δ18Of and δ2Hf values plot on the meteoric water line and modification of fluid inclusion water due to “in-cave” evaporation are found to be negligible. Consequently, variations of recent glacial hydro-climate and temperatures in the western tropical Atlantic can be constrained. In general, δ18Of values from fluid inclusions are up to 3 ‰ higher than those of modern drip water, which is interpreted as a weaker atmospheric convective activity during the last glacial period. In addition, reconstructed temperatures suggest an average cooling of 2–3 ◦C during the LGM compared to modern cave temperatures. Reconstructed cave temperatures yield an average cooling of −1.4 ± 2.8 ◦C for HS 2 and −3.6 ± 2.2 ◦C for HS 3. Higher δ18Of values of these samples further suggest that the drip water was dominated by orographic rainfall and/or cold fronts, along with weak or even absent convective activity. In contrast, during intersta-dial phases, reconstructed temperatures reached nearly modern values, and convective activity was comparable to or only slightly weaker than today

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    Full text link
    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed

    Descoberta semântica de recursos na Ubicomp: um estudo de caso aplicado a casas de vegetação.

    Get PDF
    Na Computação Ubíqua (Ubicomp) os recursos que constituem os ambientes devem estar compartilhados para serem acessados de qualquer lugar e a qualquer momento. Este artigo apresenta o EXEHDA-SD (SemanticDiscovery), um mecanismo para descoberta de recursos, que agrega em sua arquitetura tecnologias para o processamento semantico de requisições por recursos. Com isso, busca-se aumentara expressividade na representação e consulta de recursos. Para avaliar as funcionalidades do mecanismo é apresentado um estudo de caso desenvolvido na Embrapa ClimaTemperado
    corecore