17 research outputs found

    Algorithmic Versus Expert Human Interpretation of Instantaneous Wave-Free Ratio Coronary Pressure-Wire Pull Back Data

    Get PDF
    Objectives The aim of this study was to investigate whether algorithmic interpretation (AI) of instantaneous wave-free ratio (iFR) pressure-wire pull back data would be noninferior to expert human interpretation. Background Interpretation of iFR pressure-wire pull back data can be complex and is subjective. Methods Fifteen human experts interpreted 1,008 iFR pull back traces (691 unique, 317 duplicate). For each trace, experts determined the hemodynamic appropriateness for percutaneous coronary intervention (PCI) and, in such cases, the optimal physiological strategy for PCI. The heart team (HT) interpretation was determined by consensus of the individual expert opinions. The same 1,008 pull back traces were also interpreted algorithmically. The coprimary hypotheses of this study were that AI would be noninferior to the interpretation of the median expert human in determining: 1) the hemodynamic appropriateness for PCI; and 2) the physiological strategy for PCI. Results Regarding the hemodynamic appropriateness for PCI, the median expert human demonstrated 89.3% agreement with the HT in comparison with 89.4% for AI (p < 0.01 for noninferiority). Across the 372 cases judged as hemodynamically appropriate for PCI according to the HT, the median expert human demonstrated 88.8% agreement with the HT in comparison with 89.7% for AI (p < 0.0001 for noninferiority). On reproducibility testing, the HT opinion itself changed 1 in 10 times for both the appropriateness for PCI and the physiological PCI strategy. In contrast, AI showed no change. Conclusions AI of iFR pressure-wire pull back data was noninferior to expert human interpretation in determining both the hemodynamic appropriateness for PCI and the optimal physiological strategy for PCI

    Placebo-controlled efficacy of percutaneous coronary intervention for focal and diffuse patterns of stable coronary artery disease

    Get PDF
    Background: Physiological assessment with pressure wire pullback can characterize coronary artery disease (CAD) with a focal or diffuse pattern. However, the clinical relevance of this distinction is unknown. We use data from the ORBITA trial (Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina) to test if the pattern of CAD predicts the placebo-controlled efficacy of percutaneous coronary intervention (PCI) on stress echocardiography ischemia and symptom end points. Methods: One hundred sixty-four patients in ORBITA underwent blinded instantaneous wave-free ratio (iFR) pullback assessment before randomization. Focal disease was defined as a ≥0.03 iFR unit drop within 15 mm, rather than over a longer distance. Analyses were performed using regression modeling. Results: In the PCI arm (n=85), 48 were focal and 37 were diffuse. In the placebo arm (n=79), 35 were focal and 44 were diffuse. Focal stenoses were associated with significantly lower fractional flow reserve (FFR) and iFR values than diffusely diseased vessels (mean FFR and iFR, focal 0.60±0.15 and 0.65±0.24, diffuse 0.78±0.10 and 0.88±0.08, respectively, P<0.0001). With adjustment for this difference, PCI for focal stenoses resulted in significantly greater reduction in stress echo ischemia than PCI for diffuse disease (P<0.05). The effect of PCI on between-arm pre-randomization adjusted exercise time was 9.32 seconds (95% CI, −17.1 to 35.7 seconds; P=0.487). When stratified for pattern of disease, there was no detectable difference between focal and diffuse CAD (Pinteraction=0.700). PCI improved Seattle Angina Questionnaire angina frequency score and freedom from angina more than placebo (P=0.034; P=0.0035). However, there was no evidence of interaction between the physiological pattern of CAD and these effects (Pinteraction=0.436; Pinteraction=0.908). Conclusions: PCI achieved significantly greater reduction of stress echocardiography ischemia in focal compared with diffuse CAD. However, for symptom end points, no such difference was observed

    Phasic flow patterns of right versus left coronary arteries in patients undergoing clinical physiological assessment

    No full text
    BACKGROUND: Coronary blood flow in humans is known to be predominantly diastolic. Small studies in animals and humans suggest that this is less pronounced or even reversed in the right coronary artery (RCA). AIMS: This study aimed to characterise the phasic patterns of coronary flow in the left versus right coronary arteries of patients undergoing invasive physiological assessment. METHODS: We analysed data from the Iberian-Dutch-English Collaborators (IDEAL) study. A total of 482 simultaneous pressure and flow measurements from 301 patients were included in our analysis. RESULTS: On average, coronary flow was higher in diastole both at rest and during hyperaemia in both the RCA and LCA (mean diastolic-to-systolic velocity ratio [DSVR] was, respectively, 1.85±0.70, 1.76±0.58, 1.53±0.34 and 1.58±0.43 for LCArest, LCAhyp, RCArest and RCAhyp, p<0.001 for between-vessel comparisons). Although the type of RCA dominance affected the DSVR magnitude (RCAdom=1.55±0.35, RCAco-dom=1.40±0.27, RCAnon-dom=1.35; standard deviation not reported as n=3), systolic flow was very rarely predominant (DSVR was greater than or equal to 1.00 in 472/482 cases [97.9%] overall), with equal prevalence in the LCA. Stenosis severity or microvascular dysfunction had a negligible impact on DSVR in both the RCA and LCA (DSVR x hyperaemic stenosis resistance R2 =0.018, p=0.03 and DSVR x coronary flow reserve R2 <0.001, p=0.98). CONCLUSIONS: In patients with coronary artery disease undergoing physiological assessment, diastolic flow predominance is seen in both left and right coronary arteries. Clinical interpretation of coronary physiological data should therefore not differ between the left and the right coronary systems
    corecore