14 research outputs found

    Genetic Polymorphisms Influencing Arsenic Metabolism: Evidence from Argentina

    Get PDF
    The susceptibility to arsenic-induced diseases differs greatly between individuals, possibly due to interindividual variations in As metabolism that affect retention and distribution of toxic metabolites. To elucidate the role of genetic factors in As metabolism, we studied how polymorphisms in six genes affected the urinary metabolite pattern in a group of indigenous women (n = 147) in northern Argentina who were exposed to approximately 200 ÎŒg/L As in drinking water. These women had low urinary percentages of monomethylated As (MMA) and high percentages of dimethylated As (DMA). MMA has been associated with adverse health effects, and DMA has the lowest body retention of the metabolites. The genes studied were arsenic(+III)methyltransferase (AS3MT), glutathione S-transferase omega 1 (GSTO1), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), methylenetetrahydrofolate reductase (MTHFR), and glutathione S-transferases mu 1 (GSTM1) and theta 1 (GSTT1). We found three intronic polymorphisms in AS3MT (G12390C, C14215T, and G35991A) associated with a lower percentage of MMA (%MMA) and a higher percentage of DMA (%DMA) in urine. The variant homozygotes showed approximately half the %MMA compared with wild-type homozygotes. These polymorphisms were in strong linkage, with high allelic frequencies (72–76%) compared with other populations. We also saw minor effects of other polymorphisms in the multivariate regression analysis with effect modification for the deletion genotypes for GSTM1 (affecting %MMA) and GSTT1 (affecting %MMA and %DMA). For pregnant women, effect modification was seen for the folate-metabolizing genes MTR and MTHFR. In conclusion, these findings indicate that polymorphisms in AS3MT—and possibly GSTM1, GSTT1, MTR, and MTHFR—are responsible for a large part of the interindividual variation in As metabolism and susceptibility

    Existing Default Values and Recommendations for Exposure Assessment - A Nordic Exposure Group Project 2011

    Get PDF
    Default values are often used in exposure assessments e.g. in modelling because of lack of actually measured data.  The quality of the exposure assessment outcome is therefore heavily dependent on the validity and representativeness this input data. Today the used default factors consist of a wide range of more or less well-documented values originating from many different sources. The purpose of this report is to give an overview and to evaluate exposure factors that are currently used by the authorities and industry in the exposure assessments for both adults (occupational and consumer exposure) and children in relation to REACH.  Another important purpose of the report is to contribute towards a further harmonisation of exposure factors by giving recommendations of most valid and representative defaults.  These recommendations can be used besides REACH also in biocide's and plant protection product's exposure assessments. The exposure default values were collected from the relevant European sources (ECHA, Consexpo, EUSES, Biocide TNsG, ECETOC, ExpoFacts) as well as from WHO and US-EPA. The following key default factors selected to the evaluation: body weight, body surface area, inhalation rate, soil and dust ingestion, drinking water, food intake, non-dietary ingestion factors, lifetime expectancy, activity factors and consumer product

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    Get PDF
    Background: Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e. g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods: Workers (N = 132) exposed to TDI and a non-exposed group ( N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 1105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1* 05, TNF-308, TNF-863) and symptoms of the eyes, upper and lower airways ( based on structured interviews). Results: For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68-6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4-110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms ( eye symptoms: variant carriers OR = 2.8, 1.1-7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69-7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed, NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion: Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non- TDI-related symptoms of the eyes and lower airways

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    No full text
    Abstract Background Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e.g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods Workers (N = 132) exposed to TDI and a non-exposed group (N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 I105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1*05, TNF -308, TNF -863) and symptoms of the eyes, upper and lower airways (based on structured interviews). Results For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68–6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4–110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms (eye symptoms: variant carriers OR = 2.8, 1.1–7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69–7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed,NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non-TDI-related symptoms of the eyes and lower airways.</p

    Hemoglobin adducts as a measure of variations in exposure to acrylamide in food and comparison to questionnaire data

    No full text
    Measurement of haemoglobin (Hb) adducts from acrylamide (AA) and its metabolite glycidamide (GA) is a possibility to improve the exposure assessment in epidemiological studies of AA intake from food. This study aims to clarify the reliability of Hb-adduct measurement from individual single samples for exposure assessment of dietary AA intake. The intra-individual variations of AA- and GA-adduct levels measured in blood samples collected over 20 months from 13 non-smokers were up to 2-fold and 4-fold, respectively. The corresponding interindividual variations observed between 68 non-smokers, with large differences in AA intake, were 6-fold and 8-fold, respectively. The intra-individual variation of the GA-to-AA-adduct level ratio was up to 3-fold, compared to 11-fold between individuals (n = 68). From AA-adduct levels the average AA daily intake (n = 68) was calculated and compared to that estimated from dietary history methodology: 0.52 and 0.67 mu g/kg body weight and day, respectively. At an individual level the measures showed low association (Rs = 0.39). Conclusions: Dietary AA is the dominating source to measured AA-adduct levels and corresponding inter- and intra-individual variations in non-smokers. Measurements from single individual samples are useful for calculation of average M intake and its variation in a cohort, and for identification of individuals only from extreme intake groups. (C) 2012 Elsevier Ltd. All rights reserved

    The GSTP1 Ile105 Val polymorphism modifies the metabolism of toluene di-isocyanate.

    No full text
    BACKGROUND: Toluene di-isocyanate (TDI) is widely used in the production of polyurethane foams and paints. As TDI causes respiratory disease in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Polymorphisms in TDI metabolising genes may affect elimination kinetics, resulting in differences in body retention, and in its turn differences in adverse effects. OBJECTIVES: To analyze how genotype modifies the associations between (i) TDI in air (2,4-TDI and 2,6-TDI) and its metabolites toluene diamine (TDA; 2,4-TDA and 2,6-TDA) in hydrolyzed urine; and (ii) 2,4-TDA and 2,6-TDA in hydrolyzed plasma and 2,4-TDA and 2,6-TDA in urine. METHODS: Workers exposed to TDI were analyzed for 2,4-TDI and 2,6-TDI in air (N=70), 2,4-TDA and 2,6-TDA in hydrolyzed urine (N=124) and in plasma (N=128), and genotype: CYP1A1*2A, CYP1A1*2B, GSTA1-52, GSTM1O, GSTM3B, GSTP1 I105V, GSTP1 A114V, GSTT1O, MPO-463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, and SULT1A1 R213H. RESULTS: GSTP1 105 strongly modified the relationship between 2,4-TDA in plasma and in urine: ValVal carriers had about twice as steep regression slope than IleIle carriers. A similar pattern was found for 2,6-TDA. CYP1A1*2A, GSTM1, GSTP1, GSTT1, and MPO possibly influenced the relationship between TDA in plasma and urine. CONCLUSION: Our results show, for the first time, genetic modification on the human TDI metabolism. The findings suggest that GSTP1 genotype should be considered when evaluating biomarkers of TDI exposure in urine and plasma. Moreover, the results support earlier findings of GSTP1 105 Val as protective against TDI-related asthma
    corecore