6 research outputs found
Identification of noncalcified coronary plaque characteristics using machine learning radiomic analysis of non-contrast high-resolution computed tomography
Background: Novel imaging and analysis techniques may offer the ability to detect noncalcified or high-risk coronary plaques on a non-contrast computer tomography (CT) scan, advancing cardiovascular diagnostics.Aims: We aimed to explore whether machine learning (ML) radiomic analysis of low-dose high-resolution non-contrast electrocardiographically (ECG) gated cardiac CT scan allows for the identification of noncalcified coronary plaque characteristics.Methods: We prospectively enrolled 125 patients with noncalcified plaques and adverse plaque characteristics (APC) and 25 controls without visible atherosclerosis on coronary CT angiography (CCTA). All patients underwent non-contrast CT exam before CCTA. Four hundred and nineteen radiomic features were calculated to identify the presence of any coronary artery disease (CAD), obstructive CAD (stenosis >50%), plaque with â„2 APC, degree of calcification, and specific APCs. ML models were trained on a training set (917 segmentations) and tested (validation) on a separate set (292 segmentations).Results: Among the radiomic features, 88.3% were associated with a plaque, 0.9% with obstructive CAD, and 76.4% with the presence of at least two APCs. Overall, 80.2%, 88.5%, and 36.5%, of features were associated with calcified, partially calcified, and noncalcified plaques, respectively. Regarding APCs, 61.1%, 61.8%, 84.2%, and 61.3% of features were associated with low attenuation (LAP), napkin-ring sign (NRS), spotty calcification (SC), and positive remodeling (PR), respectively. ML models outperformed conventional methods for the presence of plaque obstructive stenosis, and the presence of 2 APCs, as well as for noncalcified plaques and partially calcified plaques, but not for calcified plaques. ML models also significantly outperformed identification of LAP and PR, but neither NRS nor SC.Conclusion: Radiomic analysis of non-contrast cardiac CT exams may allow for the identification of specific noncalcified coronary plaque characteristics displaying the potential for future clinical applications
The Effect of Intensive Dietary Intervention on the Level of RANTES and CXCL4 Chemokines in Patients with Non-Obstructive Coronary Artery Disease: A Randomised Study
Background: Inflammation is the key pathophysiological mechanism of the initiation and progression of atherosclerosis. The study objective was to assess the effects of a dietary intervention based on the model of the dietary approaches to stop hypertension (DASH) diet on the levels of chemokines RANTES and CXCL4 in patients with non-obstructive coronary artery disease. Methods: As part of Dietary Intervention to Stop Coronary Atherosclerosis in Computed Tomography (DISCO-CT) study, patients were randomised to an intervention group (n = 40), where the DASH diet was introduced along with optimal pharmacotherapy, and to a control group (n = 39), with optimal pharmacotherapy alone. In the DASH group, systematic dietary counselling was provided for the follow-up period. RANTES and CXCL4 levels were determined using ELISA. Results: In the DASH group, the RANTES level insignificantly reduced from 42.70 ± 21.1 ng/mL to 38.09 ± 18.5 ng/mL (p = 0.134), and the CXCL4 concentration significantly reduced from 12.38 ± 4.1 ng/mL to 8.36 ± 2.3 ng/mL (p = 0.0001). At the same time, an increase in the level of both chemokines was observed in the control group: RANTES from 34.69 ± 22.7 to 40.94 ± 20.0 ng/mL (p = 0.06) and CXCL4 from 10.98 ± 3.6 to 13.0 5± 4.8 ng/mL (p = 0.009). The difference between the changes in both groups was significant for both RANTES (p = 0.03) and CXCL4 (p = 0.00001). The RANTES/CXCL4 ratio reduced in the control group (from 3.52 ± 2.8 to 3.35 ± 2.8; p = 0.006), while in the DASH group, an increase was observed (from 3.54 ± 1.7 to 4.77 ± 2.4; p = 0.001). Conclusions: A 12-month-long intensive dietary intervention based on DASH diet guidelines as an addition to optimal pharmacotherapy causes changes in the levels of chemokines CXCL4 and RANTES and their mutual relationship in comparison to conventional treatment
Usefulness of MCP-1 Chemokine in the Monitoring of Patients with Coronary Artery Disease Subjected to Intensive Dietary Intervention: A Pilot Study
Monocyte chemotactic protein-1 (MCP-1) plays an important role in the entire atherosclerotic process, from atherogenesis to destabilisation of the atherosclerotic plaque. The purpose of this study is to evaluate the effect of the dietary approaches to stop hypertension (DASH) diet in patients with coronary artery disease on the MCP-1 plasma concentration and to evaluate the potential usefulness of this chemokine as a marker of change in the volume and composition of coronary plaque. Material and method. As part of the dietary intervention to stop coronary atherosclerosis in computed tomography (DISCO-CT) study, patients were randomised to an intervention group (n = 40) in which the DASH diet was introduced, and to a control group (n = 39) with no dietary intervention. In the DASH group, dietary counselling was provided at all follow-up visits within 12 months of the follow-up period. MCP-1 plasma concentration was determined using enzyme-linked immunosorbent assay (ELISA). Coronary plaque analysis was performed using a semi-automated plaque analysis software system (QAngioCT, Medis, The Netherlands). Results. In the DASH group, MCP-1 plasma concentration significantly decreased by 34.1 pg/mL (p = 0.01), while in the control group, the change in MPC-1 was not significant. Significant inverse correlations were revealed for the change in MCP-1 plasma concentration and change in the consumption of vitamin C and dietary fibre both in the DASH (r = â0.519, p = 0.0005; r = â0.353, p = 0.025, respectively) and in the control group (r = â0.488 p = 0.001; r = â0.502, p = 0.001, respectively). In patients with the highest decrease in percent atheroma volume (PAV), a significant positive correlation was observed between the change in MCP-1 plasma concentration and changes in PAV (r = 0.428, p = 0.033) and calcified plaque component (r = 0.468, p = 0.018), while the change in noncalcified plaque component correlated inversely with change in MCP1 (r = â0.459, p = 0.021). Conclusion. Dietary intervention based on the DASH diet model reduces the MCP-1plasma concentration, mostly due to an increased intake of plant-derived, fibre-rich foods and antioxidants. The change in MCP-1 plasma concentration seems to reflect changes in the atheroma volume and proportions between the calcified and non-calcified plaque elements
Diet and Lifestyle Intervention-Induced Pattern of Weight Loss Related to Reduction in Low-Attenuation Coronary Plaque Burden
Background: Despite extensive research on body weight and cardiovascular risk, the mechanistic relationship between weight loss and coronary plaque modification has not been adequately addressed. This study aimed to determine the association between body composition dynamics and low-attenuation coronary plaque (LAP) burden. Methods: Eighty-nine participants (40% women, 60 ± 7.7 years) of the Dietary Intervention to Stop Coronary Atherosclerosis in Computed Tomography (DISCO-CT) study with non-obstructive atherosclerosis with nonobstructive atherosclerosis confirmed in computed tomography angiography (CCTA), a randomized (1:1), prospective, single-center study were included into the analysis. Patients were randomly assigned to either experimental arm (intensive diet and lifestyle intervention atop optimal medical therapy, n = 45) or control arm (optimal medical therapy alone, n = 44) over 66.8 ± 13.7 weeks. Changes (â) in body mass (BM) and body composition parameters, including total body fat (TBF), skeletal muscle mass (SMM), and fat-to-muscle ratio (FMR), measured with bioimpedance analyzer were compared with CCTA-measured âLAP. Coronary plaque analysis was performed using the 2 Ă 192 dual-energy scanner (Somatom Force, Siemens, Germany), while quantitative coronary plaque measurements were performed using a semi-automated plaque analysis software system (QAngioCT v3.1.3.13, Medis Medical Imaging Systems, Leiden, The Netherlands). Results: Significant intergroup differences were found for âBM (â3.6 ± 4.9 kg in the experimental vs. â1.4 ± 2.9 kg in the control group, p = 0.015), âTBF (â3.4 ± 4.8% in the experimental vs. 1.1 ± 5.5% in the control arm, p p p p p = 0.004; r = 0.233, p = 0.028, respectively), and negatively with âSMM (r = â0.285, p = 0.007). Multivariate linear regression analysis revealed the association of âLAP with âBM, âTBF, and âFMR. Conclusions: The study intervention resulted in BM reduction characterized by fat loss, skeletal muscle gain, and increased FMR. This weight loss pattern may lead to a reduction in high-risk coronary plaque. Compared to a simple weight control, tracking body composition changes over time can provide valuable information on adverse coronary plaque modification