19 research outputs found

    Clinical evaluation of radioactive stents

    Get PDF
    Restenosis, the major problem after stent implantation, is caused by in-stent neointimal hyperplasia. A number of metbods and techniques have been studied during the last ten years to address tbis issue, but in-stent restenosis has remained at a rate of 15-25% in most of tbe clinical trials. Several experimental and clinical trials showed that brachytherapy, following a balloon angioplasty or stent implantation, reduced restenosis by inhibiting neointimal hype

    Radioactive stents delay but do not prevent in-stent neointimal hyperplasia

    Get PDF
    BACKGROUND: Restenosis after conventional stenting is almost exclusively caused by neointimal hyperplasia. Beta-particle-emitting radioactive stents decrease in-stent neointimal hyperplasia at 6-month follow-up. The purpose of this study was to evaluate the 1-year outcome of (32)P radioactive stents with an initial activity of 6 to 12 microCi using serial quantitative coronary angiography and volumetric ECG-gated 3D intravascular ultrasound (IVUS). METHODS AND RESULTS: Of 40 patients undergoing initial stent implantation, 26 were event-free after the 6-month follow-up period and 22 underwent repeat catheterization and IVUS at 1 year; they comprised half of the study population. Significant luminal deterioration was observed within the stents between 6 months and 1 year, as evidenced by a decrease in the angiographic minimum lumen diameter (-0.43+/-0.56 mm; P:=0.028) and in the mean lumen diameter in the stent (-0.55+/-0. 63 mm; P:=0.001); a significant increase in in-stent neointimal hyperplasia by IVUS (18.16+/-12.59 mm(3) at 6 months to 27.75+/-11. 99 mm(3) at 1 year; P:=0.001) was also observed. Target vessel revascularization was performed in 5 patients (23%). No patient experienced late occlusion, myocardial infarction, or death. By 1 year, 21 of the initial 40 patients (65%) remained event-free. CONCLUSIONS: Neointimal proliferation is delayed rather than prevented by radioactive stent implantation. Clinical outcome 1 year after the implantation of stents with an initial activity of 6 to 12 microCi is not favorable when compared with conventional stenting

    Positive geometric vascular remodeling is seen after catheter-based radiation followed by conventional stent implantation but not after radioactive stent implantation

    Get PDF
    BACKGROUND: Recent reports demonstrate that intracoronary radiation affects not only neointimal formation but also vascular remodeling. Radioactive stents and catheter-based techniques deliver radiation in different ways, suggesting that different patterns of remodeling after each technique may be expected. METHODS AND RESULTS: We analyzed remodeling in 18 patients after conventional stent implantation, 16 patients after low-activity radioactive stent implantation, 16 patients after higher activity radioactive stent implantation, and, finally, 17 patients who underwent catheter-based radiation followed by conventional stent implantation. Intravascular ultrasound with 3D reconstruction was used after stent implantation and at the 6-month follow-up to assess remodeling within the stent margins and at its edges. Preprocedural characteristics were similar between groups. In-stent neointimal hyperplasia (NIH) was inhibited by high-activity radioactive stent implantation (NIH 9.0 mm(3)) and by catheter-based radiation followed by conventional stent implantation (NIH 6.9 mm(3)) compared with low-activity radioactive stent implantation (NIH 21.2 mm(3)) and conventional stent implantation (NIH 20.8 mm(3)) (P:=0.008). No difference in plaque or total vessel volume was seen behind the stent in the conventional, low-activity, or high-activity stent implantation groups. However, significant increases in plaque behind the stent (15%) and in total vessel volume (8%) were seen in the group that underwent catheter-based radiation followed by conventional stent implantation. All 4 groups demonstrated significant late lumen loss at the stent edges; however, edge restenosis was seen only in the group subjected to high-activity stent implantation and appeared to be due to an increase in plaque and, to a lesser degree, to negative remodeling. CONCLUSIONS: Distinct differences in the patterns of remodeling exist between conventional, radioactive, and catheter-based radiotherapy with stenting

    Preserved endothelium-dependent vasodilation in coronary segments previously treated with balloon angioplasty and intracoronary irradiation

    Get PDF
    BACKGROUND: Abnormal endothelium-dependent coronary vasomotion has been reported after balloon angioplasty (BA), as well as after intracoronary radiation. However, the long-term effect on coronary vasomotion is not known. The aim of this study was to evaluate the long-term vasomotion of coronary segments treated with BA and brachytherapy. METHODS AND RESULTS: Patients with single de novo lesions treated either with BA followed by intracoronary beta-irradiation (according to the Beta Energy Restenosis Trial-1.5) or with BA alone were eligible. Of these groups, those patients in stable condition who returned for 6-month angiographic follow-up formed the study population (n=19, irradiated group and n=11, control group). Endothelium-dependent coronary vasomotion was assessed by selective infusion of serial doses of acetylcholine (ACh) proximally to the treated area. Mean luminal diameter was calculated by quantitative coronary angiography both in the treated area and in distal segments. Endothelial dysfunction was defined as a vasoconstriction after the maximal dose of ACh (10(-6) mol/L). Seventeen irradiated segments (89.5%) demonstrated normal endothelial function. In contrast, 10 distal nonirradiated segments (53%) and 5 control segments (45%) demonstrated endothelium-dependent vasoconstriction (-19+/-17% and -9.0+/-5%, respectively). Mean percentage of change in mean luminal diameter after ACh was significantly higher in irradiated segments (P=0.01). CONCLUSIONS: Endothelium-dependent vasomotion of coronary segments treated with BA followed by beta-radiation is restored in the majority of stabl

    Outcome from balloon induced coronary artery dissection after intracoronary beta radiation

    Get PDF
    OBJECTIVE: To evaluate the healing of balloon induced coronary artery dissection in individuals who have received beta radiation treatment and to propose a new intravascular ultrasound (IVUS) dissection score to facilitate the comparison of dissection through time. DESIGN: Retrospective study. SETTING: Tertiary referral centre. PATIENTS: 31 patients with stable angina pectoris, enrolled in the beta energy restenosis trial (BERT-1.5), were included. After excluding those who underwent stent implantation, the evaluable population was 22 patients. INTERVENTIONS: Balloon angioplasty and intracoronary radiation followed by quantitative coronary angiography (QCA) and IVUS. Repeat QCA and IVUS were performed at six month follow up. MAIN OUTCOME MEASURES: QCA and IVUS evidence of healing of dissection. Dissection classification for angiography was by the National Heart Lung Blood Institute scale. IVUS proven dissection was defined as partial or complete. The following IVUS defined characteristics of dissection were described in the affected coronary segments: length, depth, arc circumference, presence of flap, and dissection score. Dissection was defined as healed when all features of dissection had resolved. The calculated dose of radiation received by the dissected area in those with healed versus non-healed dissection was also compared. RESULTS: Angiography (type A = 5, B = 7, C = 4) and IVUS proven (partial = 12, complete = 4) dissections were seen in 16 patients following intervention. At six month follow up, six and eight unhealed dissections were seen by angiography (A = 2, B = 4) and IVUS (partial = 7, complete = 1), respectively. The mean IVUS dissection score was 5.2 (range 3-8) following the procedure, and 4.6 (range 3-7) at follow up. No correlation was found between the dose prescribed in the treated area and the presence of unhealed disse

    The temporal pattern of immune and inflammatory proteins prior to a recurrent coronary event in post-acute coronary syndrome patients

    Get PDF
    Purpose: We assessed the temporal pattern of 29 immune and inflammatory proteins in post-acute coronary syndrome (ACS) patients, prior to the development of recurrent ACS. Methods: High-frequency blood sampling was performed in 844 patients admitted for ACS during one-year follow-up. We conducted a case-control study on the 45 patients who experienced reACS (cases) and two matched event-free patients (controls) per case. Olink Proteomics’ immunoassay was used to obtain serum levels of the 29 proteins, expressed in an arbitrary unit on the log2-scale (Normalized Protein eXpression, NPX). Linear mixed-effects models were applied to examine the temporal pattern of the proteins, and to illustrate differences between cases and controls. Results: Mean age was 66 ± 12 years and 80% were men. Cases and controls had similar baseline clinical characteristics. During the first 30 days, and after multiple testing correction, cases had significantly higher serum levels of CXCL1 (difference of 1.00 NPX, p ¼ 0.002), CD84 (difference of 0.64 NPX, p ¼ 0.002) and TNFRSF10A (difference of 0.41 NPX, p < 0.001) than controls. After 30 days, serum levels of all 29 proteins were similar in cases and controls. In particular, no increase was observed prior to reACS. Conclusions: Among 29 immune and inflammatory proteins, CXCL1, CD84 and TNFRSF10A were associated with early reACS after initial ACS-admission

    Cohort profile of BIOMArCS: The BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands

    Get PDF
    __Purpose:__ Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. __Participants:__ BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. __Methods and analysis:__ We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-Term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for nonfatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS

    The temporal pattern of immune and inflammatory proteins prior to a recurrent coronary event in post-acute coronary syndrome patients

    Get PDF
    Purpose: We assessed the temporal pattern of 29 immune and inflammatory proteins in post-acute coronary syndrome (ACS) patients, prior to the development of recurrent ACS. Methods: High-frequency blood sampling was performed in 844 patients admitted for ACS during one-year follow-up. We conducted a case-control study on the 45 patients who experienced reACS (cases) and two matched event-free patients (controls) per case. Olink Proteomics’ immunoassay was used to obtain serum levels of the 29 proteins, expressed in an arbitrary unit on the log2-scale (Normalized Protein eXpression, NPX). Linear mixed-effects models were applied to examine the temporal pattern of the proteins, and to illustrate differences between cases and controls. Results: Mean age was 66 ± 12 years and 80% were men. Cases and controls had similar baseline clinical characteristics. During the first 30 days, and after multiple testing correction, cases had significantly higher serum levels of CXCL1 (difference of 1.00 NPX, p = 0.002), CD84 (difference of 0.64 NPX, p = 0.002) and TNFRSF10A (difference of 0.41 NPX, p < 0.001) than controls. After 30 days, serum levels of all 29 proteins were similar in cases and controls. In particular, no increase was observed prior to reACS. Conclusions: Among 29 immune and inflammatory proteins, CXCL1, CD84 and TNFRSF10A were associated with early reACS after initial ACS-admission
    corecore