11 research outputs found

    Simulating COVID19 transmission from observed movement

    No full text
    Current models of COVID-19 transmission predict infection from reported or assumed interactions. Here we leverage high-resolution observations of interaction to simulate infectious processes. Ultra-Wide Radio Frequency Identification (RFID) systems were employed to track the real-time physical movements and directional orientation of children and their teachers in 4 preschool classes over a total of 34 observations. An agent-based transmission model combined observed interaction patterns (individual distance and orientation) with CDC-published risk guidelines to estimate the transmission impact of an infected patient zero attending class on the proportion of overall infections, the average transmission rate, and the time lag to the appearance of symptomatic individuals. These metrics highlighted the prophylactic role of decreased classroom density and teacher vaccinations. Reduction of classroom density to half capacity was associated with an 18.2% drop in overall infection proportion while teacher vaccination receipt was associated with a 25.3% drop. Simulation results of classroom transmission dynamics may inform public policy in the face of COVID-19 and similar infectious threats

    Predictive Value of Sequential Organ Failure Assessment Score across Patients with and without COVID-19 Infection

    No full text
    Sequential organ failure assessment (SOFA) scores are commonly used in crisis standards of care policies to assist in resource allocation. The relative predictive value of SOFA by coronavirus disease (COVID-19) infection status and among racial and ethnic subgroups within patients infected with COVID-19 is unknown. To evaluate the accuracy and calibration of SOFA in predicting hospital mortality by COVID-19 infection status and across racial and ethnic subgroups. We performed a retrospective cohort study of adult admissions to the University of Miami Hospital and Clinics inpatient wards (July 1, 2020-April 1, 2021). We primarily considered maximum SOFA within 48 hours of hospitalization. We assessed accuracy using the area under the receiver operating characteristic curve (AUROC) and created calibration belts. Considered subgroups were defined by COVID-19 infection status (by severe acute respiratory syndrome coronavirus 2 polymerase chain reaction testing) and prevalent racial and ethnic minorities. Comparisons across subgroups were made with DeLong testing for discriminative accuracy and visualization of calibration belts. Our primary cohort consisted of 20,045 hospitalizations, of which 1,894 (9.5%) were COVID-19 positive. SOFA was similarly accurate for COVID-19-positive (AUROC, 0.835) and COVID-19-negative (AUROC, 0.810;  = 0.15) admissions but was slightly better calibrated in patients who were positive for COVID-19. For those with critical illness, maximum SOFA score accuracy at critical illness onset also did not differ by COVID-19 status (AUROC, COVID-19 positive vs. negative: intensive care unit admissions, 0.751 vs. 0.775;  = 0.46; mechanically ventilated, 0.713 vs. 0.792,  = 0.13), and calibration was again better for patients positive for COVID-19. Among patients with COVID-19, SOFA accuracy was similar between the non-Hispanic White population (AUROC, 0.894) and racial and ethnic minorities (Hispanic White population: AUROC, 0.824 [ vs. non-Hispanic White = 0.05]; non-Hispanic Black population: AUROC, 0.800 [  = 0.12]; Hispanic Black population: AUROC, 0.948 [  = 0.31]). This similar accuracy was also found for those without COVID-19 (non-Hispanic White population: AUROC, 0.829; Hispanic White population: AUROC, 0.811 [  = 0.37]; Hispanic Black population: AUROC, 0.828 [  = 0.97]; non-Hispanic Black population: AUROC, 0.867 [  = 0.46]). SOFA was well calibrated for all racial and ethnic groups with COVID-19 but estimated mortality more variably and performed less well across races and ethnicities without COVID-19. SOFA accuracy does not differ by COVID-19 status and is similar among racial and ethnic groups both with and without COVID-19. Calibration is better for COVID-19-infected patients and, among those without COVID-19, varies by race and ethnicity

    Bloodstream Infection Risk, Incidence, and Deaths for Hospitalized Patients during Coronavirus Disease Pandemic

    No full text
    Hospital-acquired infections are emerging major concurrent conditions during the coronavirus disease (COVID-19) pandemic. We conducted a retrospective review of hospitalizations during March‒October 2020 of adults tested by reverse transcription PCR for severe acute respiratory syndrome coronavirus 2. We evaluated associations of COVID-19 diagnosis with risk for laboratory-confirmed bloodstream infections (LCBIs, primary outcome), time to LCBI, and risk for death by using logistic and competing risks regression with adjustment for relevant covariates. A total of 10,848 patients were included in the analysis: 918 (8.5%) were given a diagnosis of COVID-19, and 232 (2.1%) had LCBIs during their hospitalization. Of these patients, 58 (25%) were classified as having central line‒associated bloodstream infections. After adjusting for covariates, COVID-19‒positive status was associated with higher risk for LCBI and death. Reinforcement of infection control practices should be implemented in COVID-19 wards, and review of superiority and inferiority ranking methods by National Healthcare Safety Network criteria might be needed
    corecore