20 research outputs found

    Epigenetic predictors of all-cause mortality are associated with objective measures of neighborhood disadvantage in an urban population

    Get PDF
    BACKGROUND: Neighborhood characteristics are robust predictors of overall health and mortality risk for residents. Though there has been some investigation of the role that molecular indicators may play in mediating neighborhood exposures, there has been little effort to incorporate newly developed epigenetic biomarkers into our understanding of neighborhood characteristics and health outcomes. METHODS: Using 157 participants of the Detroit Neighborhood Health Study with detailed assessments of neighborhood characteristics and genome-wide DNA methylation profiling via the Illumina 450K methylation array, we assessed the relationship between objective neighborhood characteristics and a validated DNA methylation-based epigenetic mortality risk score (eMRS). Associations were adjusted for age, race, sex, ever smoking, ever alcohol usage, education, years spent in neighborhood, and employment. A secondary model additionally adjusted for personal neighborhood perception. We summarized 19 neighborhood quality indicators assessed for participants into 9 principal components which explained over 90% of the variance in the data and served as metrics of objective neighborhood quality exposures. RESULTS: Of the nine principal components utilized for this study, one was strongly associated with the eMRS (β = 0.15; 95% confidence interval = 0.06-0.24; P = 0.002). This principal component (PC7) was most strongly driven by the presence of abandoned cars, poor streets, and non-art graffiti. Models including both PC7 and individual indicators of neighborhood perception indicated that only PC7 and not neighborhood perception impacted the eMRS. When stratified on neighborhood indicators of greenspace, we observed a potentially protective effect of large mature trees as this feature substantially attenuated the observed association. CONCLUSION: Objective measures of neighborhood disadvantage are significantly associated with an epigenetic predictor of mortality risk, presenting a potential novel avenue by which neighborhood-level exposures may impact health. Associations were independent of an individual's perception of their neighborhood and attenuated by neighborhood greenspace features. More work should be done to determine molecular risk factors associated with neighborhoods, and potentially protective neighborhood features against adverse molecular effects

    Associations between long-term fine particulate matter exposure and hospital procedures in heart failure patients

    Get PDF
    Background Ambient fine particulate matter (PM2.5) contributes to global morbidity and mortality. One way to understand the health effects of PM2.5 is by examining its impact on performed hospital procedures, particularly among those with existing chronic disease. However, such studies are rare. Here, we investigated the associations between annual average PM2.5 and hospital procedures among individuals with heart failure. Methods Using electronic health records from the University of North Carolina Healthcare System, we created a retrospective cohort of 15,979 heart failure patients who had at least one of 53 common (frequency > 10%) procedures. We used daily modeled PM2.5 at 1x1 km resolution to estimate the annual average PM2.5 at the time of heart failure diagnosis. We used quasi- Poisson models to estimate associations between PM2.5 and the number of performed hospital procedures over the follow-up period (12/31/2016 or date of death) while adjusting for age at heart failure diagnosis, race, sex, year of visit, and socioeconomic status. Results A 1 μg/m3 increase in annual average PM2.5 was associated with increased glycosylated hemoglobin tests (10.8%; 95% confidence interval = 6.56%, 15.1%), prothrombin time tests (15.8%; 95% confidence interval = 9.07%, 22.9%), and stress tests (6.84%; 95% confidence interval = 3.65%, 10.1%). Results were stable under multiple sensitivity analyses. Conclusions These results suggest that long-term PM2.5 exposure is associated with an increased need for diagnostic testing on heart failure patients. Overall, these associations give a unique lens into patient morbidity and potential drivers of healthcare costs linked to PM2.5 exposure

    Neighborhood environment, social cohesion, and epigenetic aging

    Get PDF
    Living in adverse neighborhood environments has been linked to risk of aging-related diseases and mortality; however, the biological mechanisms explaining this observation remain poorly understood. DNA methylation (DNAm), a proposed mechanism and biomarker of biological aging responsive to environmental stressors, offers promising insight into potential molecular pathways. We examined associations between three neighborhood social environment measures (poverty, quality, and social cohesion) and three epigenetic clocks (Horvath, Hannum, and PhenoAge) using data from the Detroit Neighborhood Health Study (n=158). Using linear regression models, we evaluated associations in the total sample and stratified by sex and social cohesion. Neighborhood quality was associated with accelerated DNAm aging for Horvath age acceleration (β = 1.8; 95% CI: 0.4, 3.1), Hannum age acceleration (β = 1.7; 95% CI: 0.4, 3.0), and PhenoAge acceleration (0 = 2.1; 95% CI: 0.4, 3.8). In models stratified on social cohesion, associations of neighborhood poverty and quality with accelerated DNAm aging remained elevated for residents living in neighborhoods with lower social cohesion, but were null for those living in neighborhoods with higher social cohesion. Our study suggests that living in adverse neighborhood environments can speed up epigenetic aging, while positive neighborhood attributes may buffer effects

    Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study

    Get PDF
    BACKGROUND: Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association. OBJECTIVES: Our main aim was to study the association between long-term air pollution exposure and DNA methylation. METHODS: We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate ma

    Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation

    Get PDF
    Background: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5; PM10; PM2.5–10). Methods: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10−7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. Results: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10−8). One-month mean PM10 and PM2.5–10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10−8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10−8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. Conclusions: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease

    Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease

    Get PDF
    BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI

    Short-term NO<sub>2</sub> exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: Results from an analysis of 138 metabolites and three exposures.

    No full text
    Background: Short-term exposure to air pollution is associated with morbidity and mortality. Metabolites are intermediaries in biochemical processes, and associations between air pollution and metabolites can yield unique mechanistic insights. Methods: We used independent cross-sectional samples with targeted metabolomics (138 metabolites across five metabolite classes) from three cohort studies, each a part of the Cooperative Health Research in the Region of Augsburg (KORA). The KORA cohorts are numbered (1 to 4) according to which survey they belong to, and lettered S or F according to whether the survey was a baseline or follow-up survey. KORA F4 (N&thinsp;=&thinsp;3044) served as our discovery cohort, with KORA S4 (N&thinsp;=&thinsp;485) serving as the primary replication cohort. KORA F4 and KORA S4 were primarily fasting cohorts. We used the non-fasting KORA F3 (N&thinsp;=&thinsp;377) cohort to evaluate replicated associations in non-fasting individuals, and we performed a random effects meta-analysis of all three cohorts. Associations between the 0&ndash;4-day lags and the 5-day average of particulate matter (PM)2.5, NO2 and ozone were modelled via generalized additive models. All air pollution exposures were scaled to the interquartile range, and effect estimates presented as percent changes relative to the geometric mean of the metabolite concentration (&Delta;GM). Results: There were 10 discovery cohort associations, of which seven were lysophosphatidylcholines (LPCs); NO2 was the most ubiquitous exposure (5/10). The 5-day average NO2-LPC(28:0) association was associated at a Bonferroni corrected P-value threshold (P&thinsp;&lt;&thinsp;1.2x10&minus;4) in KORA F4 [&Delta;GM&thinsp;=&thinsp;11.5%; 95% confidence interval (CI)&thinsp;=&thinsp;6.60, 16.3], and replicated (P&thinsp;&lt;&thinsp;0.05) in KORA S4 (&Delta;GM&thinsp;=&thinsp;21.0%; CI&thinsp;=&thinsp;4.56, 37.5). This association was not observed in the non-fasting KORA F3 cohort (&Delta;GM&thinsp;=&thinsp;&minus;5.96%; CI&thinsp;=&thinsp;&minus;26.3, 14.3), but remained in the random effects meta-analysis (&Delta;GM&thinsp;=&thinsp;10.6%; CI&thinsp;=&thinsp;0.16, 21). Conclusions: LPCs are associated with short-term exposure to air pollutants, in particular NO2. Further research is needed to understand the effect of nutritional/fasting status on these associations and the causal mechanisms linking air pollution exposure and metabolite profiles

    Associations among plasma metabolite levels and short-term exposure to PM<sub>2.5</sub> and ozone in a cardiac catheterization cohort.

    No full text
    RATIONALE: Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood. OBJECTIVE: This study explored associations between short-term exposures to PM with a diameter &lt;2.5&mu;m (PM2.5) and ozone with plasma metabolite concentrations. METHODS AND RESULTS: We used cross-sectional data from a cardiac catheterization cohort at Duke University, North Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, acylcarnitines, ketones and total non-esterified fatty acid plasma concentrations were determined in fasting samples. Daily concentrations of PM2.5 and ozone were obtained from a Bayesian space-time hierarchical model, matched to each patient&#39;s residential address. Ten metabolites were selected for the analysis based on quality criteria and cluster analysis. Associations between metabolites and PM2.5 or ozone were analyzed using linear regression models adjusting for long-term trend and seasonality, calendar effects, meteorological parameters, and participant characteristics. We found delayed associations between PM2.5 or ozone and changes in metabolite levels of the glycine-ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with mitochondrial dysfunction. The strongest association was seen for an increase of 8.1&mu;g/m(3) in PM2.5 with a lag of one day and decreased mean glycine concentrations (-2.5% [95% confidence interval: -3.8%; -1.2%]). CONCLUSIONS: Short-term exposures to ambient PM2.5 and ozone is associated with changes in plasma concentrations of metabolites in a cohort of cardiac catheterization patients. Our findings might help to understand the link between air pollution and cardiovascular disease

    Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization.

    No full text
    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. OBJECTIVES: To investigate short-term temperature effects on metabolites related to cardiovascular disease. METHODS: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. RESULTS: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5&deg;C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a -1.4% [-2.4%; -0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4&deg;C and 20&deg;C, respectively. Both a 5&deg;C decrease in temperature on colder days (&lt;4&deg;C)and a 5&deg;C increase in temperature on warmer days (&ge;4&deg;C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [-0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5&deg;C decreases on colder (&lt;20&deg;C) days and 5&deg;C increases on warmer days (&ge;20&deg;C), respectively. CONCLUSIONS: We observed multiple effects of air temperature on metabolites several of which are reported to be involved in cardiovascular disease. Our findings might help to understand the link between air temperature and cardiovascular disease
    corecore