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Abstract

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current 

evidence is based on small, cross-sectional studies. We examined blood DNA methylation in 

relation to incident CHD across multiple prospective cohorts.

METHODS: Nine population-based cohorts from the United States and Europe profiled 

epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, 

and prospectively ascertained CHD events including coronary insufficiency/unstable angina, 

recognized myocardial infarction (MI), coronary revascularization, and coronary death. Cohorts 

conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, 

blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses 

across cohorts.

RESULTS: Among 11,461 individuals (mean age 64 years, 67% women, 35% African-

American) free of CHD at baseline, 1,895 developed CHD during a mean follow-up of 11.2 years. 

Methylation levels at 52 cytosine-phosphate-guanine (CpG) sites were associated with incident 

CHD or MI (false discovery rate<0.05). These CpGs map to genes with key roles in calcium 

regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and 

epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), 

coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among 

others. Mendelian randomization analyses supported a causal effect of DNA methylation on 

incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA 

transcripts.

CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across 

diverse populations, and may serve as an informative tool for gaining further insight on the 

development of CHD.
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INTRODUCTION

Coronary heart disease (CHD) is a major contributor to global morbidity and mortality.1 

Despite substantial progress in CHD prevention, improved approaches are needed to further 

reduce CHD incidence. Methylation of DNA at cytosine-phosphate-guanine (CpG) 

dinucleotides is a stable yet environmentally responsive epigenetic regulatory mechanism. 

DNA methylation at a CpG site is dependent on both underlying genetic variation as well as 

exposures to environmental factors.2 In vitro and animal-based studies provide evidence that 

DNA methylation changes are involved in the development of CHD,3 and large-scale 

population-based studies have shown that risk factors for CHD including smoking,4 obesity,5 

hypertension,6,7 serum lipids,8,9 and type-2 diabetes10 are linked to persistent differences in 

leukocyte DNA methylation. Hence DNA methylation, as a molecular bio-archive 

integrating genetic predisposition and risk factor exposures, may provide further insight on 

CHD development and identify novel modifiable pathways related to CHD. Prior studies of 

DNA methylation and CHD in humans11–15 have generally been small in sample size (e.g. n 

< 300), focused on repetitive elements11,13 or selective genomic regions,15 or have been 

cross-sectional or case-control in design.11,13–15 Whether blood leukocyte DNA methylation 

predicts future CHD has not been comprehensively investigated.

We conducted a longitudinal, large-scale, multi-cohort, epigenome-wide investigation of 

incident CHD events among 11,461 participants in the Cohorts for Heart and Aging Genetic 

Epidemiology (CHARGE) consortium.16 We first assessed whether leukocyte DNA 

methylation was associated with risk of CHD. We then combined information on the 

identified CHD-associated methylation sites with genetic sequence variation to provide an 

integrated genomic map reflecting CHD risk, and evaluated if there was evidence for causal 

effects of DNA methylation variation on incident CHD.

METHODS

Study design and population

We selected cohorts participating in the CHARGE Consortium in which genome-wide 

leukocyte DNA methylation was assessed using the Infinium 450k microarray, and CHD 

events were prospectively ascertained. Nine population-based cohorts comprising a total of 

11,461 participants from the United States and Europe were included: the Atherosclerosis 

Risk in Communities Study (ARIC), Cardiovascular Health Study (CHS), long-tErm follow-

up of antithrombotic management Patterns In acute CORonary syndrome patients 

(EPICOR), the Framingham Heart Study (FHS), the Invecchiare in Chianti study 

(InCHIANTI), the Kooperative Gesundheitsforschung in der Region Augsburg study 

(KORA), the Normative Aging Study (NAS), the Women’s Health Initiative “Epigenetic 

Mechanisms of Particulate Matter-Mediated CVD” (WHI-EMPC) ancillary study, and the 

“Integrative genomics and risk of CHD and related phenotypes in the Women’s Health 

Initiative” (WHI-BAA23) Ancillary study (Detailed information in Methods S1). Each 

cohort study obtained informed consent from participants and protocol approval from its 

respective institutional review board and ethics committee. DNA methylation data was only 

collected for African-Americans of the ARIC cohort, from the Jackson, MS and Forsyth 

County, NC study sites of the cohort. Cohorts comprising participants of both African-
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American and European Ancestry were analyzed in a race-specific manner. Accordingly, we 

performed an epigenome-wide analysis within each of the 12 study samples, and then meta-

analyzed the resulting summary statistics from the 12 analyses. We also examined the 

association between DNA methylation and cis-genetic variants (±500 KB) in a subset of the 

cohorts and conducted Mendelian Randomization to evaluate potential causal relations 

between DNA methylation and incident CHD (Figure 1). .

Data and Materials

The DNA methylation datasets from ARIC and CHS data can be requested from the 

corresponding author. EPICOR data are available upon request from HuGeF a project 

agreement; requests should be sent to info@hugef-torino.org. The FHS DNA methylation 

datasets are available from the dbGAP repository: phs000724. The genotype datasets are 

available from the dbGAP repository: phs000007. The InCHIANTI data are available on 

request from the corresponding author. The KORA data can be requested at KORA Project 

Application Self-Service Tool (PASST) from the Helmholtz Zentrum München German 

Research Center for Environmental Health. The NAS DNA methylation datasets are 

available at the dbGAP repository: phs000853. The WHI-BAA23 DNA methylation dataset 

is available at dbGAP repository phs001335. WHI-EMPC data are available on request 

from the WHI website or the corresponding author.

Measurement of DNA methylation

For all cohorts, DNA was extracted from whole blood samples and bisulfite-converted using 

a Zymo EZ DNA methylation kit. The Illumina Infinium Human Methylation450K 

BeadChip (Illumina Inc, San Diego, CA, USA) was used to measure DNA methylation. 

Quality control, filtering, and normalization of the methylation data were independently 

conducted for each cohort according to established criteria4,6 and other diagnostics unique to 

the cohort (details in Supplemental Methods). For each CpG, methylation = M/(M+U+ε), 

where M and U are the average fluorescence intensity from the probe (i.e., the 

oligonucleotide that hybridizes to the target CpG) corresponding to the methylated (M) and 

unmethylated (U) target CpG, respectively, and ε=100 to protect against division by zero. 

Therefore, the methylation at each CpG is contained in the interval 0-1, with 0 indicating no 

methylation and 1 indicating 100% methylation at the target CpG across DNA from cells in 

the sample.

Definition of coronary heart disease (CHD) and myocardial infarction (MI) events

Our primary outcome of interest was incident CHD, defined as any of the following: 

recognized nonfatal or fatal MI (hospitalization with diagnostic electrocardiographic (ECG) 

changes and/or biomarkers of MI), coronary insufficiency/unstable angina, coronary 

revascularization, or coronary death. We also conducted a secondary meta-analyses 

restricted to incident MI-only (recognized nonfatal or fatal MI), in order to evaluate whether 

analysis with this more homogenous outcome measure supported robustness of the results.
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STATISTICAL ANALYSES

Individual study epigenome-wide analyses—Baseline was defined as the time of 

blood sampling for DNA methylation assays, and all cohorts excluded individuals with 

prevalent CHD at baseline. Seven cohorts conducted time-to-event analyses using Cox 

proportional hazard models, and three of these cohorts adapted Firth’s penalized Cox 

regression17 due to a low number of CHD events. Two prospective cohorts, EPICOR and 

WHI-BAA23, employed a nested case-control design with incident CHD events and 

performed logistic regression analyses, which—under specific assumptions—provide risk 

estimates that are unbiased in relation to the estimates derived from Cox regression.18,19 All 

analyses were race-specific, and adjusted for age, sex, body mass index (kg/m2), smoking 

status (current, former, never), education (as years of education or categorical levels of 

school degrees completed), differential cell counts,20 family structure (if present), and batch-

related technical variables (Supplemental Methods).

Meta-analysis—We performed an inverse variance-weighted fixed-effects meta-analysis 

using the metafor package in R. The fixed-effects method is standard practice in genome-

wide studies21,22 and has been consistently used in prior large-scare epigenome-wide studies 

in CHARGE and other consortia.4,6 It is well-documented that using the Random-effects 

approach leads to substantially diminished power,23 which has major implications for such 

genome-wide meta-analysis studies that are more exploratory than standard epidemiological 

studies and are aimed at uncovering new loci previously not possible. However, we also 

include, as sensitivity analyses, results with random-effects models (described further in the 

results section). We accounted for multiple-testing by controlling the false discovery rate 

(FDR) at 5%. Of the CpGs that exceeded this a priori multiple-testing threshold, we 

excluded CpGs where the CpG probe sequence harbored a single nucleotide polymorphism 

[SNP] assayed in the 1000 Genomes Project with a minor allele frequency >0.01 (given that 

the frequency of underlying genetic variation differs between race/ancestry groups, we 

excluded CpGs with the potential for underlying SNPs specific to that cohorts race/

ancestry), and CpGs that had high inter-study heterogeneity assessed using Cochran’s Q test 

(Q <0.05).

Identification of associated genetic variants and Mendelian Randomization 
analyses—We investigated whether genetic variants within ±500 kb (cis) of the incident 

CHD- and MI-associated CpGs contributed to variation in methylation levels, i.e., were 

methylation-quantitative trait loci (meQTLs). The discovery analysis was conducted on 

3,868 individuals from the FHS, followed by replication in 1,731 individuals from KORA. 

Genotyping was conducted with the Affymetrix 500K and MIPs 50K platforms in FHS, and 

the Affymetrix Axiom array in KORA, and imputation was performed using the 1000 

Genomes reference panel in both cohorts. meQTLs detected at P <1x10−4 in the discovery 

stage, followed by P<bonferroni threshold (i.e. P<0.05/number of significant discovery stage 

meQTLs) at the replication stage were selected for conducting MR using a two-sample 

instrumental variable approach (implemented with MRbase24) to infer causal relations 

between DNA methylation and incident CHD. Single strongest cis-meQTLs were utilized: 

1) to minimize potential of horizontal pleiotropy, and 2) due to lack of sufficient meQTLs 

from independent loci in low linkage disequilibrium. Genotype associations for CHD and 
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MI were obtained from the CARDIoGRAMplusC4D 2015 GWAS (n= 60,801 cases and n= 

123,504 controls).25 We used the meQTLs for differential methylation at CpGs that were 

significant for a causal relationship between DNA methylation and incident CHD in 

Mendelian randomization analyses (p < 0.05) for further inquiry on putative effects on gene 

expression, by overlapping meQTLs with expression-QTLs from the Genotype-Tissue 

Expression (GTEx) resource (The GTEx Project was supported by the Common Fund of the 

Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, 

NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were 

obtained from the GTEx Portal on 11/25/2018 and 02/10/2019).

RESULTS

Participant characteristics

Among the 11,461 participants, mean age at baseline was 64 years, 67% were female, and 

35% were of African-American ancestry (Table 1). During a mean follow-up of 11.2 years, a 

total of 1,895 CHD events and 1,183 MI events occurred.

Association of DNA methylation with risk of Coronary heart disease (CHD)

Among 442,192 CpGs analyzed, methylation levels at 30 CpGs were associated (FDR 

<0.05) with incident CHD (Table 2; individual forest plots for each CpG in Supplemental 

Figure 1), after excluding CpGs with underlying SNPs that could interfere with probe 

binding (n=7) and CpGs that demonstrated substantial heterogeneity (Q < 0.05) in the meta-

analyses (n=8). Methylation levels at 29 CpGs were associated with our secondary outcome 

of incident MI at a FDR <0.05 (Table 3; individual forest plots for each CpG in 

Supplemental Figure 2), after similarly excluding CpGs with underlying SNPs (n=4) and 

high heterogeneity (n=5). Additional genomic information on these CpGs are provided in 

Supplemental Tables 1 and 2. Among these 30 and 29 CpGs identified in the incident CHD 

and incident MI-only meta-analyses, respectively, seven CpGs met the FDR<0.05 threshold 

in both analyses, resulting in 52 unique CpGs identified across the two meta-analyses. We 

found that the direction, magnitude, and precision of estimated effects for these 52 CpGs 

were highly concordant when comparing results from the two different meta-analyses 

(Figure 2). Manhattan plots indicated that significant associations were distributed across the 

genome (Supplemental Figure 3). Neither meta-analysis was strongly influenced by inflation 

from technical or batch effects, and both had a uniform distribution of p-values and 

symmetry in the coefficient direction of effect (Supplemental Figure 3). As results obtained 

from the secondary, incident MI-only meta-analysis did not materially differ from the 

primary, CHD meta-analysis, we henceforth combined the results from the two meta-

analyses and simply refer to all 52 CpGs as CHD-associated CpGs.

Sensitivity-analyses and race-specific meta-analyses

We observed highly consistent results when comparing associations for the 52 CHD-

associated CpGs from all cohorts (n=11,461) to results from the subset meta-analysis of the 

seven cohorts that performed Cox regression (n=9,255) (Supplemental Figure 4). Similarly, 

we performed four additional meta-analyses, each time excluding one of the four largest 

cohorts (FHS, NAS, ARIC, KORA), and found similar results across these meta-analyses for 
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a majority of the 52 CHD-associated CpGs (Supplemental Figure 5).However associations 

appear to be notably driven by results from ARIC and FHS for 20 of the CpGs. In race-

specific meta-analyses, the effect size and direction of effects for the majority of the CHD-

associated CpGs were similar when comparing those of European versus African-American 

ancestry (Supplemental Figure 6). However, 11 of the 52 CpGs showed race-specific 

differences in the association of DNA methylation with incident CHD (p-value <0.05 for 

difference in t-statistic; Supplemental Table 3). Finally, we also conducted a random-effects 

sensitivity meta-analysis on the 30 CpGs that were associated with incident CHD (i.e. those 

reported in Table 2). When comparing results from models run under a fixed-effects meta-

analysis vs. a random-effects meta-analysis,the majority of these 30 CpGs had either exactly 

the same or very similar effect sizes (CI), and many had the same p-value as well. 

Exceptions to this include: cg22617878, cg02155262, cg06596307, and cg08853494 

(Supplemental Table 4).

Associations of DNA methylation with genetic variants

For 10 of the 52 CHD-associated CpGs, we were able to detect and replicate multiple 

meQTLs for each CpG, comprising 1,634 unique SNPs total (full list available as online 

supplementary Excel File). Across these 1,634 meQTLs, we observed overlap with SNPs 

identified in prior GWAS studies on diabetic kidney disease, age-related macular 

degeneration, prostate cancer, neutrophil count, multiple sclerosis, follicular lymphoma, 

diffuse large B cell lymphoma, multiple sclerosis, and kidney stones (Supplemental Table 5).

Identifying causal associations between DNA methylation and incident CHD using 
Mendelian Randomization

For each of the 10 CpGs with replicated meQTLs, we proceeded to select the cis-meQTL(+/

−500kb) with the lowest p-value, to utilize as an instrumental variable to model the causal 

exposure of differential methylation at the 10 CpGs on development of incident CHD (Table 

4). For two of the 10 CpGs, Mendelian Randomization (MR) analyses supported a causal 

effect of DNA methylation on incident CHD: cg26470101 (β [95% CI] for 1% increase in 

DNA methylation = 0.042 [0.002, 0.08]; P = 0.037) and cg07289306 (β [95% CI] for 1% 

increase in DNA methylation = −0.148 [−0.288, −0.009]; P = 0.04) on CHD (Table 4). Both 

CpGs map to regulatory active intergenic regions within CpG islands, and cg07289306 is 

located proximal to two long non-coding RNA transcripts26 (Figure 3).

Expression-QTLs overlapping with methylation-QTLs of CpGs showing causal 
associations between DNA methylation and incident CHD

For methylation at CpGs cg07289306 and cg26470101, which had evidence for causal 

effects on CHD development in MR analyses, as described above, we took all corresponding 

meQTLs (n=26 and 261, respectively) to identify whether these meQTLs overlapped with 

expression-QTLs (eQTLs), using the GTEx catalogue. For cg07289306, we found that 26 of 

28 meQTLs for this CpG overlap with eQTLs for a long non-coding RNA downstream of 

cg07289306: lncRNA RP4-555D20.2. Similarly, we found that for the 261 meQTLs 

detected and replicated for cg26470101, 84 overlapped with an eQTL for the Integrin 
Subunit Alpha 6 (ITGA6) gene.
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DISCUSSION

We conducted a large-scale analysis of DNA methylation in relation to incident CHD and 

MI among 11,461 adults across multiple cohort studies. Methylation at 52 CpGs across the 

genome were associated with future risk of CHD and MI. A 5% increase in methylation of 

identified CpGs was related to differences in CHD risk of a clinically relevant magnitude, 

ranging from a 46% decrease in the risk of CHD (cg12766383) to a 65% increase in risk 

(cg05820312), independent of age, sex, and other known CHD risk factors. In exploratory 

analyses to highlight candidates for functional experimentation, Mendelian randomization 

analyses revealed that methylation at two loci had a causal effect on incident CHD, 

potentially via non-coding RNA regulation and tissue structural elements.

Biological relevance and clinical implications

Several of the 52 CHD-associated CpGs in our study map to genes with roles in calcium 

regulation, as well as genes that have been identified in association with calcium levels and 

kidney function in prior GWAS and DNA methylation studies. CpG cg2261787 maps to the 

ATPase plasma membrane calcium transporter 2 (ATP2B2) gene from the plasma membrane 

calcium transporter family with critical roles in intracellular calcium homeostasis. Similarly, 

CpG cg06582394 maps to the calcium sensing receptor (CASR) gene, which has a key role 

in calcium homeostasis. SNPs in CASR have been consistently associated with serum 

calcium in populations from several different ancestries.27–29 Furthermore, in a recent 

Mendelian randomization analysis of 184,305 individuals, Larsson et al.28 reported that a 

genetic variant at the CASR locus showed strong associations with coronary artery disease 

and MI. Similarly, CpGs cg14010194 and cg03467256 map to guanylate cyclase activator 

1B (GUCA1B) and hippocalcin-like 1 (HPCAL1), respectively, both with roles in calcium-

dependent regulation.30,31

We also identified CHD-associated CpG loci linked to renal function. CpGs cg19227382, 

cg03467256, and cg25497530 map to genes cadherin-related 23 (CDH23), HPCAL1, and 

protein tyrosine phosphatase receptor type N2 (PTPRN2), respectively. Both CDH23 and 
HPCAL1 were identified in a GWAS of kidney function in approximately 64,000 

participants of European decent.32 An epigenome-wide study of 400 individuals showed 

differential blood DNA methylation at the PTPRN2 locus in chronic kidney disease cases 

relative to controls.33 However, genetic variants in PTPRN2 were also associated with 

coronary artery calcified atherosclerotic plaque in a meta-analysis GWAS among African-

Americans with type-2 diabetes.34

Observational studies and calcium supplementation randomized clinical trials provide 

evidence of associations between serum calcium levels and increased risk of CHD and MI.
35,36 Our results provide the first evidence that epigenetic regulation of calcium homeostasis 

may be involved in calcium-related CHD risk, an underdeveloped area of therapeutics. 

Similarly, kidney function is a well-recognized risk factor for CVD, with a recent AHA 

report highlighting that individuals with an estimated glomerular filtration rate (eGFR) of 15 

to 30 mL/min per 1.73 m2 have the highest adjusted relative risk of CVD mortality.37,38 Our 

results suggest that epigenetic regulation may be involved in pathways linking kidney 

function to CHD risk. We do note that since our analyses were adjusted for major risk 
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factors such as smoking and BMI, we may not have identified BMI- and smoking-specific 

methylation signatures related to incident HD. Our goal was to identify methylation 

signatures related to CHD beyond major known risk factors such as smoking and BMI, and 

we direct readers to major epigenome-wide meta-analyses studies on BMI39 and smoking4 

that have previously been published.

Other gene loci identified include the insulin growth factor 1 receptor (IGF1R), transforming 

growth factor beta receptor 1 (TGFBR1), and integrin subunit beta 2 (ITGB2). The roles of 

IGF1R and the TGF-beta signaling in cardiac remodeling and function are well recognized,
40,41 and recently TGFBR1 gene expression levels in blood samples from acute MI patients 

strongly predicted left-ventricular dysfunction.42 Furthemore, ITGB2 encodes a leukocyte 

cell-surface adhesion molecule that directly facilitates leukocyte transendothelial migration, 

a key step in formation of atherosclerosis.43

DNA methylation at CpGs cg26470101 and cg07289306 showed evidence of a causal effect 

on CHD. Both of these CpGs are located within CpG islands in intergenic regions, with 

cg07289306 located proximal to two long non-coding RNAs (lncRNAs). Furthermore, 

meQTLs for cg07289306 overlap with the expression-QTLs (eQTLs) for a long non-coding 

RNA downstream of cg07289306: lncRNA RP4-555D20.2. This suggests that methylation 

at cg07289306 may be part of regulatory pathways involving lncRNAs. Increasing evidence 

indicates that lncRNAs are key components of transcriptional regulatory pathways that 

govern cardiac development and cardiovascular pathophysiology.44,45 Similarly, meQTls we 

identified for CpG cg26470101 overlapped with eQTLs for Integrin Subunit Alpha 6 

(ITGA6) transcript expression. In a study of left ventricular myocardium tissue in mice, 

Lodder et al.46 assessed collagen levels combined with genome-wide genotyping and cardiac 

expression analyses, and found that eQTLs for ITGA6 transcripts overlapped with QTLs 

related to cardiac collagen deposition. They report their findings to suggest that ITGA6 is an 

important part of the molecular network modulating collagen deposition in the heart. In 

another study of murine cardiac tissue,47 ITGA6 was one of six identified (immune 

response) genes with decreased expression profiles in cardiac tissue macrophages from older 

mice compared to that of young mice . Our findings in the context of the findings from these 

other studies may suggest that DNA methylation plays a role in premature cardiovascular 

aging and risk of CHD via non-coding RNA as well as tissue cellular structural elements.

Findings in the context of prior evidence

Our epigenome-wide study identifies numerous loci and related genes and pathways that 

have not been identified in incident CHD genome-wide association studies alone. 

Furthermore, our findings did not overlap with those of previous epigenome-wide studies of 

CHD, as prior studies were small and predominantly cross-sectional. Cross-sectional studies 

may identify CpGs and associated genes and pathways that are altered as a result of disease 

state, rather than the prospective design employed in our study which may be identifying 

loci involved in pathways preceding manifest disease. Prior studies were also often 

composed of select populations geographically and ethnically distinct from the populations 

in our meta-analysis. For example, Sharma et al. identified differentially methylated regions 

(DMRs) near or within genes C1QL4, CCDC47, and TGFBR3 in a study of 36 men (18 
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CAD, 18 controls) from India.15 Nakatochi et al.14 compared 192 MI cases with 192 

controls in an epigenome-wide whole-blood analysis on elderly Japanese individuals, and 

reported DNA methylation at two CpGs, located in the ZFHX3 and SMARCA4 genes, to be 

associated with MI. In the prospective Italian EPICOR cohort, Guarrera et al.12 compared 

292 MI cases with 292 matched controls ascertained prospectively during follow-up, and 

reported that a differentially-methylated region (DMR), within the Zinc Finger And BTB 

Domain Containing 2 (ZBTB12) gene body was associated with MI.

Study limitations

We used well-established statistical procedures to remove the effect of cell-type 

heterogeneity as a source of confounding,20,48 however residual confounding is still 

possible. Further, while we used a stringent threshold to exclude any results for which there 

was between-study heterogeneity, some degree of heterogeneity is likely and may affect the 

results observed. However, some element of the heterogeneity likely reflects racial and 

environment specific sources of methylation differences. Additionally, our Mendelian 

randomization analyses provide evidence supporting a causal role of methylation at two 

CpGs but this does not prove causality, and thus, follow-up experimental work is needed. 

Currently, leukocyte-specific and trans-tissue meQTL datasets are limited with relatively 

small sample sizes, thus limiting our ability to use multiple independent meQTL loci for 

multi-SNP instrumental variables in Mendelian randomization analyses Another limitation is 

the relatively large contribution from cohorts based in primarily Western countries in Europe 

and the United States due to the current limited availability of DNA methylation and 

incident CHD data in more ethnically diverse cohorts.

Study strengths

Our study is by far the largest of its kind, with nearly 12,000 participants. We also made use 

of incident cases that were stringently adjudicated over a long-term follow-up. Furthermore, 

we used Mendelian randomization to build evidence regarding causal effects of DNA 

methylation on incident CHD.

CONCLUSION

We present novel and robust findings on associations of leukocyte DNA methylation with 

risk of CHD, with effect sizes that are of a clinically relevant magnitude. In addition, our 

findings highlight known as well as under-recognized pathways to CHD, including calcium 

regulation, kidney function, and gene regulation mechanisms involving non-coding RNAs. 

Overall, the findings provide a deeper understanding of the molecular landscape of incident 

CHD and may present novel avenues for targeting disease pathways and development of 

therapeutic interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NON-STANDARD ABBREVIATIONS AND ACRONYMS

DMR Differentially Methylated Region

e-QTL expression-quantitative trait loci

FDR false discovery rate

GTEx Genotype-Tissue Expression

GWAS genome-wide association study

LncRNA long non-coding RNA

RNA ribonucleic acid

SNP single-nucleotide polymorphism
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CLINICAL PERSPECTIVES

What’s New?

• Among 11,461 individuals across nine population-based cohorts from the 

United States and Europe, differences in blood leukocyte DNA methylation at 

52 CpG loci were robustly associated with incident CHD.

• Several of the differentially-methylated loci map to genes related to calcium 

regulation and kidney function.

• Exploratory analyses with Mendelian randomization supported a causal effect 

of DNA methylation on incident CHD at loci in active regulatory regions, 

with links to non-coding RNAs and genes involved in cellular and tissue 

structural components.

What are the clinical implications?

• Leukocyte genome regulatory mechanisms, via DNA methylation, are 

robustly linked to risk of developing CHD.

• Our findings provide the first evidence that genomic regulation via epigenetic 

modifications in kidney function- and calcium homeostasis-related pathways 

may be involved in the development of CHD.

• Our findings of epigenetic loci related to non-coding RNAs highlight 

pathways that have not emerged in genome-wide studies of CHD, and may 

represent novel therapeutic targets which are thus far unexplored.
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Figure 1. 
Overall analytic workflow. Af. Am. denotes individuals of African-American ancestry; Eur 
denotes individuals of European ancestry. meQTLs: methylation quantitative trait loci.

Agha et al. Page 19

Circulation. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Plot of effect sizes (i.e., log hazard ratios) and 95% confidence intervals (CIs) for the 52 

coronary heart disease (CHD)-associated CpG DNA methylation sites, comparing results 

from the incident CHD meta-analysis (blue) vs the incident MI-only meta-analysis (orange).
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Figure 3. 
Adapted UCSC genome browser image - for genomic location of CpGs cg07289306 and 

cg26470101. The red zoom-in triangles are our addition to the UCSC image (http://

genome.ucsc.edu), and represent a magnified region corresponding to the red marked region 

on each chromosome. The yellow highlights are also our addition, and highlight the exact 

genomic location of each CpG
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Table 2.

DNA methylation at 30 CpG sites associated with the risk of coronary heart disease (CHD).* CpGs with false 

discovery rate <0.05 in are shown (Bonferroni-significant sites in bold).

CpG name beta coefficient
† Nominal p-value Hazard Ratio (95% CI) Gene

‡

cg22617878 −0.3719 1.99E-08 0.69 (0.61,0.79) ATP2B2

cg13827209 0.2680 3.76E-08 1.31 (1.19,1.44) TGFBR1

cg14185717 −0.2878 1.38E-07 0.75 (0.67,0.83) BNC2

cg10307345 −0.1480 1.86E-07 0.86 (0.82,0.91) PTPN5

cg13822123 0.4138 2.03E-07 1.51 (1.29,1.77) PSME4

cg23245316 −0.4674 2.17E-07 0.63 (0.53,0.75) TSSC1

cg24977276 −0.3256 2.54E-07 0.72 (0.64,0.82) GTF2I

cg24447788 −0.2679 4.33E-07 0.76 (0.69,0.85) (PTBP1**)

cg08422803 0.1994 7.52E-07 1.22 (1.13,1.32) ITGB2

cg01751802 0.1473 9.35E-07 1.16 (1.09,1.23) KANK2

cg02449373 0.3715 9.98E-07 1.45 (1.25,1.68) FUT1

cg02683350 −0.5062 1.55E-06 0.60 (0.49,0.74) ADAMTS2

cg05820312 0.5031 1.60E-06 1.65 (1.35,2.03) TRAPPC9

cg06639874 −0.2506 1.83E-06 0.78 (0.7,0.86) MLPH

cg06582394 0.1657 1.90E-06 1.18 (1.1,1.26) CASR

cg02155262 0.4770 1.97E-06 1.61 (1.32,1.96) AGA

cg12766383 −0.6194 1.98E-06 0.54 (0.42,0.69) UBR4

cg05892484 −0.5020 2.01E-06 0.61 (0.49,0.74) MAD1L1

cg03031868 0.3461 2.29E-06 1.41 (1.22,1.63) ESD

cg25497530 −0.2225 2.62E-06 0.80 (0.73,0.88) PTPRN2

cg06596307 −0.4198 2.99E-06 0.66 (0.55,0.78) IGF1R

cg10702366 −0.1093 3.09E-06 0.90 (0.86,0.94) FGGY

cg26470101 0.3052 3.09E-06 1.36 (1.19,1.54) (DLX2**)

cg26042024 −0.3109 3.13E-06 0.73 (0.64,0.84) ZFAT

cg00466121 0.4646 3.16E-06 1.59 (1.31,1.93) ZNHIT6

cg04987302 −0.3378 3.71E-06 0.71 (0.62,0.82) (OTX2-AS1**)

cg08853494 0.2210 4.03E-06 1.25 (1.14,1.37) RCHY1;THAP6

cg26467725 −0.4225 4.22E-06 0.66 (0.55,0.78) SLCO3A1

cg06442192 −0.5241 4.89E-06 0.59 (0.47,0.74) ZNF541

cg00393373 −0.3156 4.91E-06 0.73 (0.64,0.84) ZNF518B

*
The CpGs reported as significant do not include X,Y chromosome probes, cross-reactive probes, single nucleotide polymorphism (SNP)-

associated probes, or probes that were significant for heterogeneity in the meta-analysis (i.e., QEp <0.05)

†
effect estimates represent log hazard ratio per 5% increase in DNA methylation

‡
Gene information is based on Illumina annotation (February 2009 - GRCh37/hg19) assembly). For CpG sites annotated to inter-genic regions, 

information on nearest annotated gene (shown with **) is from R Bioconductor package FDb.InfiniumMethylation.hg19
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Table 3.

DNA methylation at 30CpG sites associated with the risk of myocardial infarction (MI).* CpGs with false 

discovery rate <0.05 in are shown (Bonferroni-significant sites in bold).

CpG name beta coefficient
† Nominal p-value Hazard Ratio (95% CI) Gene

‡

cg22871797 −0.599 5.29E-08 0.55(0.44,0.68) CYFIP1

cg24977276 −0.366 9.97E-08 0.69(0.61,0.79) GTF2I

cg18598861 −0.671 1.61E-07 0.51 (0.4,0.66) IRF9

cg09777776 0.287 2.25E-07 1.33 (1.19,1.48) ZNF254

cg20545941 −0.885 2.47E-07 0.41 (0.29,0.58) MPPED1

cg19935845 −0.336 4.65E-07 0.71 (0.63,0.81) TNXB

cg24423782 −0.398 5.37E-07 0.67 (0.58,0.78) MIR182

cg00393373 −0.401 7.68E-07 0.67 (0.57,0.79) ZNF518B

cg00466121 0.487 7.79E-07 1.63 (1.34,1.97) ZNHIT6

cg19227382 −0.504 8.12E-07 0.60 (0.49,0.74) CDH23

cg03467256 −0.408 8.33E-07 0.67 (0.57,0.78) HPCAL1

cg25196881 −0.269 1.05E-06 0.76 (0.69,0.85) (THBS1**)

cg02321112 0.390 1.08E-06 1.48 (1.26,1.73) (MNX1-AS1**)

cg00355799 −0.216 1.40E-06 0.81 (0.74,0.88) (LOC339529**)

cg17556588 −0.154 1.45E-06 0.86(0.8,0.91) PRRG4

cg04987302 −0.428 1.50E-06 0.65 (0.55,0.78) (OTX2-AS1**)

cg07289306 0.616 1.71E-06 1.85 (1.44,2.38) (MIR138-1**)

cg05892484 −0.551 1.84E-06 0.58 (0.46,0.72) MAD1L1

cg10702366 −0.150 2.11E-06 0.86 (0.81,0.92) FGGY

cg22618720 −0.424 2.37E-06 0.65 (0.55,0.78) (MIR5095**)

cg14010194 −0.484 2.71E-06 0.62 (0.5,0.75) GUCA1B

cg13827209 0.285 2.71E-06 1.33 (1.18,1.5) TGFBR1

cg24318598 −0.254 2.79E-06 0.78 (0.7,0.86) ANO1

cg07015775 0.479 3.13E-06 1.61 (1.32,1.97) ZNHIT6

cg21018156 −0.135 3.17E-06 0.87 (0.83,0.92) (LINC01312**)

cg07475527 −0.225 3.77E-06 0.80 (0.73,0.88) (RCAN3**)

cg20000562 0.218 3.93E-06 1.24 (1.13,1.36) SFTA3

cg07436807 −0.779 4.10E-06 0.46 (0.33,0.64) STAMBPL1; ACTA2

cg14029912 −0.367 4.29E-06 0.69 (0.59,0.81) (BHLHE40**)

*
The CpGs reported as significant do not include X,Y chromosome probes, cross-reactive probes, single nucleotide polymorphism (SNP)-

associated probes, or probes that were significant for heterogeneity in the meta-analysis (i.e., QEp <0.05)

†
effect estimates represent log hazard ratio per 5% increase in DNA methylation

‡
Gene information is based on Illumina annotation (February 2009 - GRCh37/hg19) assembly). For CpG sites annotated to inter-genic regions, 

information on nearest annotated gene (shown with **) is from R Bioconductor package FDb.InfiniumMethylation.hg19
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