31,801 research outputs found

    On the Running of the Cosmological Constant in Quantum General Relativity

    Full text link
    We present arguments that show what the running of the cosmological constant means when quantum general relativity is formulated following the prescription developed by Feynman.Comment: 5 page

    Resummed Quantum Gravity

    Get PDF
    We present the current status of the a new approach to quantum general relativity based on the exact resummation of its perturbative series as that series was formulated by Feynman. We show that the resummed theory is UV finite and we present some phenomenological applications as well.Comment: 4 pages, 1 figure; presented at ICHEP0

    Quantum Corrections to Newton's Law

    Get PDF
    We present a new approach to quantum gravity starting from Feynman's formulation for the simplest example, that of a scalar field as the representative matter. We show that we extend his treatment to a calculable framework using resummation techniques already well-tested in other problems. Phenomenological consequences for Newton's law are described.Comment: 7 pages, 1 figure; improved fig., refs;improved discussion;more discussion; proo

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt →\rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Infrared Observations of AGN

    Full text link
    We present results from an imaging and spectroscopic study of the dust properties of Seyfert galaxies in the 1-10um range. The data are compared to state of the art models of torus emission to constrain geometrical and physical properties of the obscuring medium.Comment: 2 pages, to appear in the IAU Symp.No.222 proceedings:"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", Gramado, Brazil, March 1-5, 200

    Reexamining evidence-based practice in community corrections: beyond 'a confined view' of what works

    Get PDF
    This article aims to reexamine the development and scope of evidence-based practice (EBP) in community corrections by exploring three sets of issues. Firstly, we examine the relationships between the contested purposes of community supervision and their relationships to questions of evidence. Secondly, we explore the range of forms of evidence that might inform the pursuit of one purpose of supervision—the rehabilitation of offenders—making the case for a fuller engagement with “desistance” research in supporting this process. Thirdly, we examine who can and should be involved in conversations about EBP, arguing that both ex/offenders’ and practitioners’ voices need to be respected and heard in this debate

    Massive Elementary Particles and Black Holes

    Full text link
    An outstanding problem posed by Einstein's general theory of relativity to the quantum theory of point particle fields is the fate of a massive point particle; for, in the classical solutions of Einstein's theory, such a system should be a black hole. We use exact results in a new approach to quantum gravity to show that this conclusion is obviated by quantum loop effects. Phenomenological implications are discussedComment: 11 pages; 1 figure; improved text relating to asymptotic safet

    Origin and roles of a strong electron-phonon interaction in cuprate oxide superconductors

    Get PDF
    A strong electron-phonon interaction arises from the modulation of the superexchange interaction by phonons. As is studied in Phys. Rev. B 70, 184514 (2004), Cu-O bond stretching modes can be soft around (pm pi/a, 0) and (0, pm pi/a), with a the lattice constant of CuO_2 planes. In the critical region of SDW, where antiferromagnetic spin fluctuations are developed around nesting wave numbers Q of the Fermi surface, the stretching modes can also be soft around 2Q. Almost symmetric energy dependences of the 2Q component of the density of states, which are observed in the so called stripe and checker-board states, cannot be explained by CDW with 2Q following the complete softening of the 2Q modes, but they can be explained by a second-harmonic effect of SDW with Q. The strong electron-phonon interaction can play no or only a minor role in the occurrence of superconductivity.Comment: 5 pages, 1 fugur
    • 

    corecore