8,130 research outputs found

    Thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions and hysteresis

    Get PDF
    A crossover at a temperature T* in the temperature dependence of the width s of the distribution of switching currents of moderately damped Josephson junctions has been reported in a number of recent publications, with positive ds/dT and IV characteristics associated with underdamped behaviour for lower temperatures T<T*, and negative ds/dT and IV characteristics resembling overdamped behaviour for higher temperatures T>T*. We have investigated in detail the behaviour of Josephson junctions around the temperature T* by using Monte Carlo simulations including retrapping from the running state into the supercurrent state as given by the model of Ben-Jacob et al. We develop discussion of the important role of multiple escape and retrapping events in the moderate-damping regime, in particular considering the behaviour in the region close to T*. We show that the behaviour is more fully understood by considering two crossover temperatures, and that the shape of the distribution and s(T) around T*, as well as at lower T<T*, are largely determined by the shape of the conventional thermally activated switching distribution. We show that the characteristic temperatures T* are not unique for a particular Josephson junction, but have some dependence on the ramp rate of the applied bias current. We also consider hysteresis in moderately damped Josephson junctions and discuss the less commonly measured distribution of return currents for a decreasing current ramp. We find that some hysteresis should be expected to persist above T* and we highlight the importance, even well below T*, of accounting properly for thermal fluctuations when determining the damping parameter Q.Comment: Accepted for publication in PR

    Quantum and Classical in Adiabatic Computation

    Get PDF
    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialised state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose groundstate encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimisation algorithms and quantum adiabatic optimisation. This new perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing - though inconclusive - results

    Exciton-photon coupling in a ZnSe based microcavity fabricated using epitaxial liftoff

    Get PDF
    We report the observation of strong exciton-photon coupling in a ZnSe based microcavity fabricated using epitaxial liftoff. Molecular beam epitaxial grown ZnSe/Zn0.9_{0.9}Cd0.1_{0.1}Se quantum wells with a one wavelength optical length at the exciton emission were transferred to a SiO2_2/Ta2_2O5_5 mirror with a reflectance of 96% to form finesse matched microcavities. Analysis of our angle resolved transmission spectra reveals key features of the strong coupling regime: anticrossing with a normal mode splitting of 23.6meV23.6 meV at 20K20 K; composite evolution of the lower and upper polaritons; and narrowing of the lower polariton linewidth near resonance. The heavy hole exciton oscillator strength per quantum well is also deduced to be 1.78×1013cm−21.78 \times 10^{13} cm^{-2}.Comment: 3 pages, 3 figure

    Optically probing the fine structure of a single Mn atom in an InAs quantum dot

    Full text link
    We report on the optical spectroscopy of a single InAs/GaAs quantum dot (QD) doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A^0 whose effective spin J=1 is significantly perturbed by the QD potential and its associated strain field. The spin interaction with photo-carriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of micro-eV, but vanishingly small for electrons.Comment: 5 pages, 3 figure

    Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy

    Full text link
    We present results on the charge dependence of the radiative recombination lifetime, Tau, and the emission energy of excitons confined to single self-assembled InGaAs quantum dots. There are significant dot-to-dot fluctuations in the lifetimes for a particular emission energy. To reach general conclusions, we present the statistical behavior by analyzing data recorded on a large number of individual quantum dots. Exciton charge is controlled with extremely high fidelity through an n-type field effect structure, providing access to the neutral exciton (X0), the biexciton (2X0) and the positively (X1+) and negatively (X1-) charged excitons. We find significant differences in the recombination lifetime of each exciton such that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant changes in the single particle hole wave function on charging the dot, an effect more pronounced on charging X0 with a single hole than with a single electron. We verify this interpretation by recasting the experimental data on exciton energies in terms of Coulomb energies. We show directly that the electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in the presence of an additional electron, and that the electron-electron and hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Voltage-controlled electron-hole interaction in a single quantum dot

    Full text link
    The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures; content as publishe
    • …
    corecore