1,857 research outputs found
Precursors of Cytochrome Oxidase in Cytochrome-Oxidase-Deficient Cells of Neurospora crassa
Three different cell types of Neurospora crassa deficient in cytochrome oxidase were studied: the nuclear mutant cni-1, the cytoplasmic mutant mi-1 and copper-depleted wild-type cells.
* 1.
The enzyme-deficient cells have retained a functioning mitochondrial protein synthesis. It accounted for 12–16% of the total protein synthesis of the cell. However, the analysis of mitochondrial translation products by gel electrophoresis revealed that different amounts of individual membrane proteins were synthesized. Especially mutant cni-1 produced large amounts of a small molecular weight translation product, which is barely detectable in wild-type.
* 2.
Mitochondrial preparations of cytochrome-oxidase-deficient cells were examined for precursors of cytochrome oxidase. The presence of polypeptide components of cytochrome oxidase in the mitochondria was established with specific antibodies. On the other hand, no significant amounts of heme a could be extracted.
* 3.
Radioactively labelled components of cytochrome oxidase were isolated by immunoprecipitation and analysed by gel electrophoresis. All three cell types contained the enzyme components 4–7, which are translated on cytoplasmic ribosomes. The mitochondrially synthesized components 1–3 were present in mi-1 mutant and in copper-depleted wild-type cells. In contrast, components 2 and 3 were not detectable in the nuclear mutant cni-1. Both relative and absolute amounts of these polypeptides in the enzyme-deficient cells were quite different from those in wild-type cells.
* 4.
The components of cytochrome oxidase found in the enzyme-deficient cells were tightly associated with the mitochondrial membranes.
* 5.
Processes, which affect and may control the production of enzyme precursors or their assembly to a functional cytochrome oxidase are discussed
Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field
The presence of a quantum critical point can significantly affect the
thermodynamic properties of a material at finite temperatures. This is
reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum
critical point, yielding particularly strong variations for varying the tuning
parameter c such as magnetic field. In this work we have studied the
thermodynamic properties of the quantum compass model in the presence of a
transverse field. The specific heat, entropy and cooling rate under an
adiabatic demagnetization process have been calculated. During an adiabatic
(de)magnetization process temperature drops in the vicinity of a field-induced
zero-temperature quantum phase transitions. However close to field-induced
quantum phase transitions we observe a large magnetocaloric effect
Diffuse-Charge Dynamics in Electrochemical Systems
The response of a model micro-electrochemical system to a time-dependent
applied voltage is analyzed. The article begins with a fresh historical review
including electrochemistry, colloidal science, and microfluidics. The model
problem consists of a symmetric binary electrolyte between parallel-plate,
blocking electrodes which suddenly apply a voltage. Compact Stern layers on the
electrodes are also taken into account. The Nernst-Planck-Poisson equations are
first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The ``weakly nonlinear''
limit of thin double layers is then analyzed by matched asymptotic expansions
in the small parameter , where is the
screening length and the electrode separation. At leading order, the system
initially behaves like an RC circuit with a response time of
(not ), where is the ionic diffusivity, but nonlinearity
violates this common picture and introduce multiple time scales. The charging
process slows down, and neutral-salt adsorption by the diffuse part of the
double layer couples to bulk diffusion at the time scale, . In the
``strongly nonlinear'' regime (controlled by a dimensionless parameter
resembling the Dukhin number), this effect produces bulk concentration
gradients, and, at very large voltages, transient space charge. The article
concludes with an overview of more general situations involving surface
conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference
Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer
Conceptual models of carcinogenesis typically consist of an evolutionary sequence of heritable changes in genes controlling proliferation, apoptosis, and senescence. We propose that these steps are necessary but not sufficient to produce invasive breast cancer because intraductal tumour growth is also constrained by hypoxia and acidosis that develop as cells proliferate into the lumen and away from the underlying vessels. This requires evolution of glycolytic and acid-resistant phenotypes that, we hypothesise, is critical for emergence of invasive cancer. Mathematical models demonstrate severe hypoxia and acidosis in regions of intraductal tumours more than 100 m from the basement membrane. Subsequent evolution of glycolytic and acid-resistant phenotypes leads to invasive proliferation. Multicellular spheroids recapitulating ductal carcinoma in situ (DCIS) microenvironmental conditions demonstrate upregulated glucose transporter 1 (GLUT1) as adaptation to hypoxia followed by growth into normoxic regions in qualitative agreement with model predictions. Clinical specimens of DCIS exhibit periluminal distribution of GLUT-1 and Na+/H+ exchanger (NHE) indicating transcriptional activation by hypoxia and clusters of the same phenotype in the peripheral, presumably normoxic regions similar to the pattern predicted by the models and observed in spheroids. Upregulated GLUT-1 and NHE-1 were observed in microinvasive foci and adjacent intraductal cells. Adaptation to hypoxia and acidosis may represent key events in transition from in situ to invasive cancer
Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions
miR451 and AMPK Mutual Antagonism in Glioma Cell Migration and Proliferation: A Mathematical Model
Glioblastoma multiforme (GBM) is the most common and the most aggressive type of brain cancer; the median survival time from the time of diagnosis is approximately one year. GBM is characterized by the hallmarks of rapid proliferation and aggressive invasion. miR-451 is known to play a key role in glioblastoma by modulating the balance of active proliferation and invasion in response to metabolic stress in the microenvironment. The present paper develops a mathematical model of GBM evolution which focuses on the relative balance of growth and invasion. In the present work we represent the miR-451/AMPK pathway by a simple model and show how the effects of glucose on cells need to be “refined” by taking into account the recent history of glucose variations. The simulations show how variations in glucose significantly affect the level of miR-451 and, in turn, cell migration. The model predicts that oscillations in the levels of glucose increase the growth of the primary tumor. The model also suggests that drugs which upregulate miR-451, or block other components of the CAB39/AMPK pathway, will slow down glioma cell migration. The model provides an explanation for the growth-invasion cycling patterns of glioma cells in response to high/low glucose uptake in microenvironment in vitro, and suggests new targets for drugs, associated with miR-451 upregulation
Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field
We study the two-dimensional kinetic Ising model below its equilibrium
critical temperature, subject to a square-wave oscillating external field. We
focus on the multi-droplet regime where the metastable phase decays through
nucleation and growth of many droplets of the stable phase. At a critical
frequency, the system undergoes a genuine non-equilibrium phase transition, in
which the symmetry-broken phase corresponds to an asymmetric stationary limit
cycle for the time-dependent magnetization. We investigate the universal
aspects of this dynamic phase transition at various temperatures and field
amplitudes via large-scale Monte Carlo simulations, employing finite-size
scaling techniques adopted from equilibrium critical phenomena. The critical
exponents, the fixed-point value of the fourth-order cumulant, and the critical
order-parameter distribution all are consistent with the universality class of
the two-dimensional equilibrium Ising model. We also study the cross-over from
the multi-droplet to the strong-field regime, where the transition disappears
Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.
Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells
Individual Preferences and Social Interactions Determine the Aggregation of Woodlice
n°e17389.info:eu-repo/semantics/publishe
l-Threonine Deaminase of Rhodospirillum rubrum
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65547/1/j.1432-1033.1971.tb01490.x.pd
- …