165 research outputs found

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection

    Peritonitis in children on peritoneal dialysis in Cape Town, South Africa: epidemiology and risks

    Get PDF
    Peritonitis is a frequent complication of peritoneal dialysis (PD) in children as well in adults. Data on PD and peritonitis in pediatric patients are very scarce in developing countries. A retrospective cohort study was performed between 2000 and 2008 with the aim to evaluate PD treatment and peritonitis epidemiology in pediatric patients in South Africa and identify risk factors for peritonitis. Baseline characteristics and potential risk factors of peritonitis were recorded, including housing, socio-economic circumstances, distance to PD center, type of PD, mode of catheter placement, race, presence of gastrostomy tube, weight, and height. Outcome indices for peritonitis were peritonitis rate, time to first peritonitis, and number of peritonitis-free patients. The patient cohort comprised 67 patients who were on PD for a total of 544 months. The total number of peritonitis episodes was 129. Median peritonitis rate was one episode every 4.3 patient months (2.8 episodes/patient-year, range 0–21.2). Median time to first infection was 2.03 months (range 0.1–21.5 months), and 28.4% of patients remained free from peritonitis. Patients with good housing and good socio-economic circumstances had a significantly lower peritonitis rate and a longer time to first peritonitis episode. Peritonitis rate was high in this cohort, compared to numbers reported for the developed world; the characteristics of causative organisms are comparable. The most important risk factors for the development of peritonitis were poor housing and poor socio-economic circumstances. More intensive counseling may be beneficial, but improvement of general socio-economic circumstances will have the greatest influence on PD success

    Selection of modalities, prescription, and technical issues in children on peritoneal dialysis

    Get PDF
    Peritoneal dialysis (PD) is widely employed as a dialytic therapy for uraemic children, especially in its automated form (APD), that is associated with less burden of care on patient and family than continuous ambulatory PD. Since APD offers a wide range of treatment options, based on intermittent and continuous regimens, prescription can be individualized according to patient’s age, body size, residual renal function, nutritional intake, and growth-related metabolic needs. Transport capacity of the peritoneal membrane of each individual patient should be assessed, and regularly monitored, by means of standardized peritoneal function tests validated in pediatric patients. To ensure maximum recruitment of peritoneal exchange area, fill volume should be scaled to body surface area and adapted to each patient, according to clinical tolerance and intraperitoneal pressure. PD solutions should be employed according to their biocompatibility and potential ultrafiltration capacity; new pH-neutral, glucose-free solutions can be used in an integrated way in separate dwells, or by appropriately mixing during the same dialytic session. Kinetic modelling software programs may help in the tailoring of PD prescription to individual patients’ characteristics and needs. Owing to advances in the technology of new APD machines, greater programming flexibility, memorized delivery control, and tele-dialysis are currently possible

    Peritoneal dialysis prescription in children: bedside principles for optimal practice

    Get PDF
    There is no unique optimal peritoneal dialysis prescription for all children, although the goals of ultrafiltration and blood purification are universal. In turn, a better understanding of the physiology of the peritoneal membrane, as a dynamic dialysis membrane with an exchange surface area recruitment capacity and unique permeability characteristics, results in the transition from an empirical prescription process based on clinical experience alone to the potential for a personalized prescription with individually adapted fill volumes and dwell times. In all cases, the prescribed exchange fill volume should be scaled for body surface area (ml/m2), and volume enhancement should be conducted based on clinical tolerance and intraperitoneal pressure measurements (IPP; cmH2O). The exchange dwell times should be determined individually and adapted to the needs of the patient, with particular attention to phosphate clearance and ultrafiltration capacity. The evolution of residual kidney function and the availability of new, more physiologic, peritoneal dialysis fluids (PDFs) also influence the prescription process. An understanding of all of these principles is integral to the provision of clinically optimal PD

    Assessment of nutritional status in children with kidney diseases-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce

    Get PDF
    In children with kidney diseases, an assessment of the child’s growth and nutritional status is important to guide the dietary prescription. No single metric can comprehensively describe the nutrition status; therefore, a series of indices and tools are required for evaluation. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. Herein, we present CPRs for nutritional assessment, including measurement of anthropometric and biochemical parameters and evaluation of dietary intake. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Audit and research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT

    BIOKID: Randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991]

    Get PDF
    BACKGROUND: Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. METHODS/DESIGN: The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera(® )solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed

    Understanding renal posttransplantation anemia in the pediatric population

    Get PDF
    Advances in renal transplantation management have proven to be beneficial in improving graft and patient survival. One of the properties of a well-functioning renal allograft is the secretion of adequate amounts of the hormone erythropoietin to stimulate erythropoiesis. Posttransplantation anemia (PTA) may occur at any point in time following transplantation, and the cause is multifactoral. Much of our understanding of PTA is based on studies of adult transplant recipients. The limited number of studies that have been reported on pediatric renal transplant patients appear to indicate that PTA is prevalent in this patient population. Erythropoietin deficiency or resistance is commonly associated with iron deficiency. An understanding of the risk factors, pathophysiology and management of PTA in the pediatric renal transplant population may provide guidelines for clinicians and researchers in the pursuit of larger prospective randomized control studies aimed at improving our limited knowledge of PTA. Recognition of PTA through regular screening and evaluation of the multiple factors that may contribute to its development are recommended after transplantation

    Quantitative Histomorphometry of the Healthy Peritoneum

    Get PDF
    The peritoneum plays an essential role in preventing abdominal frictions and adhesions and can be utilized as a dialysis membrane. Its physiological ultrastructure, however, has not yet been studied systematically. 106 standardized peritoneal and 69 omental specimens were obtained from 107 patients (0.1-60 years) undergoing surgery for disease not affecting the peritoneum for automated quantitative histomorphometry and immunohistochemistry. The mesothelial cell layer morphology and protein expression pattern is similar across all age groups. Infants below one year have a thinner submesothelium; inflammation, profibrotic activity and mesothelial cell translocation is largely absent in all age groups. Peritoneal blood capillaries, lymphatics and nerve fibers locate in three distinct submesothelial layers. Blood vessel density and endothelial surface area follow a U-shaped curve with highest values in infants below one year and lowest values in children aged 7-12 years. Lymphatic vessel density is much lower, and again highest in infants. Omental blood capillary density correlates with parietal peritoneal findings, whereas only few lymphatic vessels are present. The healthy peritoneum exhibits major thus far unknown particularities, pertaining to functionally relevant structures, and subject to substantial changes with age. The reference ranges established here provide a framework for future histomorphometric analyses and peritoneal transport modeling approaches. © 2016, EDP Science. All rights reserved

    Chronic kidney disease in children: the global perspective

    Get PDF
    In contrast to the increasing availability of information pertaining to the care of children with chronic kidney disease (CKD) from large-scale observational and interventional studies, epidemiological information on the incidence and prevalence of pediatric CKD is currently limited, imprecise, and flawed by methodological differences between the various data sources. There are distinct geographic differences in the reported causes of CKD in children, in part due to environmental, racial, genetic, and cultural (consanguinity) differences. However, a substantial percentage of children develop CKD early in life, with congenital renal disorders such as obstructive uropathy and aplasia/hypoplasia/dysplasia being responsible for almost one half of all cases. The most favored end-stage renal disease (ESRD) treatment modality in children is renal transplantation, but a lack of health care resources and high patient mortality in the developing world limits the global provision of renal replacement therapy (RRT) and influences patient prevalence. Additional efforts to define the epidemiology of pediatric CKD worldwide are necessary if a better understanding of the full extent of the problem, areas for study, and the potential impact of intervention is desired
    corecore