8 research outputs found

    Karyotype differentiation in three species of Tripogandra Raf. (Commelinaceae) with different ploidy levels

    Get PDF
    Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA+ banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI + heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other

    Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum

    Get PDF
    A comparative analysis of mitotic chromosomes of Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) was performed aiming to identify cytological differences between the two most important species of this genus. Both species have symmetric karyotypes, with 2n = 20 metacentric chromosomes ranging in size from 2.00 to 1.19 μm (cacao) and from 2.21 to 1.15 μm (cupuaçu). The interphase nuclei of both species were of the arreticulate type, displaying up to 20 chromocentres, which were more regularly shaped in cacao than in cupuaçu. Prophase chromosomes of both species were more condensed in the proximal region, sometimes including the whole short arm. Both species exhibited only one pair of terminal heterochromatic bands, positively stained with chromomycin A 3 , which co-localized with the single 45S rDNA site. Each karyotype displayed a single 5S rDNA site in the proximal region of another chromosome pair. Heterochromatic bands were also observed on the centromeric/pericentromeric regions of all 20 chromosomes of cacao after C-banding followed by Giemsa or DAPI staining, whereas in cupuaçu they were never detected. These data suggest that the chromosomes of both species have been largely conserved and their pericentromeric chromatin is the only citologically differentiated region

    The foraging ecology of larval and juvenile fishes

    No full text
    Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes

    The foraging ecology of larval and juvenile fishes

    No full text
    corecore