34 research outputs found

    Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation

    Get PDF
    Background: The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Methods: Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6–8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. Results: The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X2 = 5.51). Levels of TNF–α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Conclusion: Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation

    Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia

    Get PDF
    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process.National Science Foundation (U.S.)Singapore-MIT Alliance for Research and Technology (SMART

    Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer

    Get PDF
    Pancreatic cancer (PCC) is a common malignant tumor of the digestive system that is resistant to traditional treatments and has an overall 5-year survival rate of <7%. Transcriptomics research provides reliable biomarkers for diagnosis, prognosis, and clinical precision treatment, as well as the identification of molecular targets for the development of drugs to improve patient survival. We sought to identify new biomarkers for PCC by combining transcriptomics and clinical data with current knowledge regarding molecular mechanisms. Consequently, we employed weighted gene co-expression network analysis and differentially expressed gene analysis to evaluate genes co-expressed in tumor versus normal tissues using pancreatic adenocarcinoma data from The Cancer Genome Atlas and dataset GSE16515 from the Gene Expression Omnibus. Twenty-one overlapping genes were identified, with enrichment of key Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, including epidermal growth factor receptor signaling, cadherin, cell adhesion, ubiquinone, and glycosphingolipid biosynthesis pathways, and retinol metabolism. Protein-protein interaction analysis highlighted 10 hub genes, according to Maximal Clique Centrality. Univariate and multivariate COX analyses indicated that TSPAN1 serves as an independent prognostic factor for PCC patients. Survival analysis distinguished TSPAN1 as an independent prognostic factor among hub genes in PCC. Finally, immunohistochemical staining results suggested that the TSPAN1 protein levels in the Human Protein Atlas were significantly higher in tumor tissue than in normal tissue. Therefore, TSPAN1 may be involved in PCC development and act as a critical biomarker for diagnosing and predicting PCC patient survival

    Regeneration of Pancreatic Non-β Endocrine Cells in Adult Mice following a Single Diabetes-Inducing Dose of Streptozotocin

    Get PDF
    The non-β endocrine cells in pancreatic islets play an essential counterpart and regulatory role to the insulin-producing β-cells in the regulation of blood-glucose homeostasis. While significant progress has been made towards the understanding of β-cell regeneration in adults, very little is known about the regeneration of the non-β endocrine cells such as glucagon-producing α-cells and somatostatin producing δ-cells. Previous studies have noted the increase of α-cell composition in diabetes patients and in animal models. It is thus our hypothesis that non-β-cells such as α-cells and δ-cells in adults can regenerate, and that the regeneration accelerates in diabetic conditions. To test this hypothesis, we examined islet cell composition in a streptozotocin (STZ)-induced diabetes mouse model in detail. Our data showed the number of α-cells in each islet increased following STZ-mediated β-cell destruction, peaked at Day 6, which was about 3 times that of normal islets. In addition, we found δ-cell numbers doubled by Day 6 following STZ treatment. These data suggest α- and δ-cell regeneration occurred rapidly following a single diabetes-inducing dose of STZ in mice. Using in vivo BrdU labeling techniques, we demonstrated α- and δ-cell regeneration involved cell proliferation. Co-staining of the islets with the proliferating cell marker Ki67 showed α- and δ-cells could replicate, suggesting self-duplication played a role in their regeneration. Furthermore, Pdx1+/Insulin− cells were detected following STZ treatment, indicating the involvement of endocrine progenitor cells in the regeneration of these non-β cells. This is further confirmed by the detection of Pdx1+/glucagon+ cells and Pdx1+/somatostatin+ cells following STZ treatment. Taken together, our study demonstrated adult α- and δ-cells could regenerate, and both self-duplication and regeneration from endocrine precursor cells were involved in their regeneration

    ニダンカイ ショウカホウ ニ ヨル セイジュク ブタ スイ ラシトウ ノ アタラシイ ブンリホウ

    No full text
    京都大学0048新制・課程博士博士(医学)甲第8830号医博第2333号新制||医||762(附属図書館)UT51-2001-F160京都大学大学院医学研究科分子医学系専攻(主査)教授 清野 裕, 教授 山岡 義生, 教授 今村 正之学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Discovery of Oxime Ethers as Hepatitis B Virus (HBV) Inhibitors by Docking, Screening and In Vitro Investigation

    No full text
    A series of oxime ethers with C6-C4 fragment was designed and virtually bioactively screened by docking with a target, then provided by a Friedel–Crafts reaction, esterification (or amidation), and oximation from p-substituted phenyl derivatives (Methylbenzene, Methoxybenzene, Chlorobenzene). Anti-hepatitis B virus (HBV) activities of all synthesized compounds were evaluated with HepG2.2.15 cells in vitro. Results showed that most of compounds exhibited low cytotoxicity on HepG2.2.15 cells and significant inhibition on the secretion of HBsAg and HBeAg. Among them, compound 5c-1 showed the most potent activity on inhibiting HBsAg secretion (IC50 = 39.93 μM, SI = 28.51). Results of the bioactive screening showed that stronger the compounds bound to target human leukocyte antigen A protein in docking, the more active they were in anti-HBV activities in vitro

    Experience of granulocyte collections and transfusions in resource-constrained settings

    No full text
    Background: Neutrophil granulocytes are essential components of innate immune response. An absolute number of neutrophils are a fundamental indicator of host defense. With increasing severity of neutropenia, either due to the disease or as a result of chemotherapy for hematologic malignancies, there is an exponential increase in the risk of severe infection. In such conditions, granulocyte transfusion is considered a potential therapeutic option due to its phagocytic properties. The study was undertaken to analyze data of granulocyte collections and transfusions in resource-constrained Settings. Methods: In this observational prospective study, granulocytes were harvested by combined administration of granulocyte colony-stimulating factors and dexamethasone mobilization and transfused to severely neutropenic patients. Data on granulocyte collections and transfusion, various determinants of donor, and procedural characteristics and patient outcomes, with respect to 30-day mortality, were analyzed. Results: After granulocyte transfusion, patients' posttransfusion white blood cell and neutrophils increased significantly. Higher platelet counts in the harvested products resulted into significant increment of patients' platelet count and markedly reduced demands of platelet transfusions, reducing chances of alloimmunization. Eighty-five percent of patients could be saved, showed improvements in their clinical conditions, and were discharged from hospital in stable condition. Conclusion: Granulocyte transfusions are an important therapeutic modality in neutropenic patients with resistant infections, until spontaneous recovery of neutrophil count occurs in patients. Cost Reduction of some of the resources should be considered for LMIC as lower price will encourage more facilities willing to offer similar procedures to aid patients. Training workforce for new and novel processes is need of hour and will add value by equipping LMIC facilities in serving the patients. Granulocyte transfusions are life-saving tool and found to be safe and well tolerated by recipients. They can play a vital role in improving outcomes and saving patients in resource-constraint countries, where there is increasing emergence of multidrug-resistant bacterial infections

    Design, Synthesis, and Bioactive Screen In Vitro of Cyclohexyl (<i>E</i>)-4-(Hydroxyimino)-4-Phenylbutanoates and Their Ethers for Anti-Hepatitis B Virus Agents

    No full text
    A series of oxime Cyclohexyl (E)-4-(hydroxyimino)-4-phenylbutanoates and their ethers were designed, synthesized, and evaluated for anti-hepatitis B virus (HBV) activities with HepG 2.2.15 cell line in vitro. Most of these compounds possessed anti-HBV activities, and among them, compound 4B-2 showed significant inhibiting effects on the secretion of HBsAg (IC50 = 63.85 &#177; 6.26 &#956;M, SI = 13.41) and HBeAg (IC50 = 49.39 &#177; 4.17 &#956;M, SI = 17.34) comparing to lamivudine (3TC) in HBsAg (IC50 = 234.2 &#177; 17.17 &#956;M, SI = 2.2) and HBeAg (IC50 = 249.9 &#177; 21.51 &#956;M, SI = 2.07). Docking study of these compounds binding to a protein residue (PDB ID: 3OX8) from HLA-A2 that with the immunodominant HBcAg18&#8722;27 epitope (HLA-A2.1- restricted CTL epitope) active site was carried out by using molecular operation environment (MOE) software. Docking results showed that behaviors of these compounds binding to the active site in HLA-A protein residue partly coincided with their behaviors in vitro anti-HBV active screening

    A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells.

    No full text
    The successful translation of mesenchymal stem cells (MSCs) from bench to bedside is predicated upon their regenerative capabilities and immunomodulatory potential. Many challenges still exist in making MSCs a viable and cost-effective therapeutic option, due in part to the challenges of sourcing MSCs from adult tissues and inconsistencies in the characterization of MSCs. In many cases, adult MSC collection is an invasive procedure, and ethical concerns and age-related heterogeneity further complicate obtaining adult tissue derived MSCs at the scales needed for clinical applications. Alternative adult sources, such as post-partum associated tissues, offer distinct advantages to overcome these challenges. However, successful therapeutic applications rely on the efficient ex-vivo expansion of the stem cells while avoiding any culture-related phenotypic alterations, which requires optimized and standardized isolation, culture, and cell preservation methods. In this review, we have compared the isolation and culture methods for MSCs originating from the human amniotic membrane (hAMSCs) of the placenta to identify the elements that support the extended subculture potential of hAMSCs without compromising their immune-privileged, pluripotent regenerative potential.AM: Human amniotic membrane; ASCs: Adipose tissue-derived stem cells; BM-MSCs: Bone marrow-mesenchymal stem cells; DMEM: Dulbecco's modified eagle medium; DT: Doubling time; EMEM: Eagle's modified essential medium; ESCM: Embryonic stem cell markers; ESCs: Embryonic stem cells; hAECs: Human amniotic epithelial cells; hAMSCs: Human amniotic mesenchymal stem cells; HLA: Human leukocyte antigen; HM: Hematopoietic markers; IM: Immunogenicity markers; MHC: Major histocompatibility complex; MSCs: Mesenchymal stem cells; MCSM: Mesenchymal cell surface markers; Nanog: NANOG homeobox; Oct: Octamer binding transcription factor 4; P: Passage; PM: Pluripotency markers; STRO-1: Stromal precursor antigen-1; SCP: Subculture potential; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen
    corecore