8 research outputs found

    Using Soil Survey Database to Assess Soil Quality in the Heterogeneous Taihang Mountains, North China

    No full text
    Soil quality evaluation is an effective pathway to understanding the status of soil function and ecosystem productivity. Numerous studies have been made in managed ecosystems and land cover to quantify its effects on soil quality. However, little is coincident regarding soil quality assessment methods and its compatibility in highly heterogeneous soil. This paper used the soil survey database of Taihang Mountains as a case study to: (i) Examine the feasibility of soil quality evaluation with two different indicator methods: Total data set (TDS) and minimum data set (MDS); and (ii) analyze the controlling factors of regional soil quality. Principal component analysis (PCA) and the entropy method were used to calculate soil quality index (SQI). SQI values assessed from the TDS and MDS methods were both significantly correlated with normalized difference vegetation index (p < 0.001), suggesting that both indices were effective to describe soil quality and reflect vegetation growth status. However, the TDS method represented a slightly more accurate assessment than MDS in terms of variance explanation. Boosted regression trees (BRT) models and path analysis showed that soil type and land cover were the most important controlling factors of soil quality, within which soil type had the greatest direct effect and land cover had the most indirect effect. Compared to MDS, TDS is a more sensitive method for assessing regional soil quality, especially in heterogeneous mountains. Soil type is the fundamental factor to determining soil quality. Vegetation and land cover indirectly modulate soil properties and soil quality

    Assessing the Influences of Land Use Change on Groundwater Hydrochemistry in an Oasis-Desert Region of Central Asia

    No full text
    Land use change greatly affects groundwater hydrochemical cycling and thereby food and ecosystem security in arid regions. Spatiotemporal distribution of groundwater hydrochemistry is vital to understand groundwater water-salt migration processes in the context of land use change, while it is not well known in the oasis-desert region of arid inland basins. Here, to investigate the influences of land use change on groundwater hydrochemistry and suggest sustainable management, 67 water samples were obtained in the Luntai Oasis, a typical oasis desert of Central Asia. Stable isotopes and chemical components of samples were analyzed. Piper and Gibbs plots were used to elaborate the chemical type and major mechanisms controlling water chemistry, respectively. The results showed that cultivated land area has markedly expanded in the Luntai Oasis over the last 20 years (increasing by 121.8%). Groundwater seasonal dynamics and groundwater–surface water interaction were altered dramatically by farmland expansion and groundwater exploitation. Specifically, the spatial heterogeneity and seasonal variability of groundwater hydrochemistry were significant. Compared with the desert area, the δ18O and TDS of river water and shallow groundwater in the oasis cropland exhibited lower values but greater seasonal variation. Higher TDS was observed in autumn for river water, and in spring for shallow groundwater. The chemical evolution of phreatic water was mainly controlled by the evaporation-crystallization process and rock dominance, with a chemical type of Cl-SO4-Na-Mg. Significant spatiotemporal heterogeneity of groundwater hydrochemistry demonstrated the influence of climatic, hydrogeological, land use, and anthropogenic conditions. Groundwater overexploitation would cause phreatic water leakage into confined water, promoting groundwater quality deterioration due to fresh saltwater mixing. Improving agricultural drainage ditches in conjunction with restricting farmland expansion and groundwater extraction is an effective way to alleviate groundwater environment deterioration and maintain oasis-desert ecosystems in arid regions

    Assessing the Influences of Land Use Change on Groundwater Hydrochemistry in an Oasis-Desert Region of Central Asia

    No full text
    Land use change greatly affects groundwater hydrochemical cycling and thereby food and ecosystem security in arid regions. Spatiotemporal distribution of groundwater hydrochemistry is vital to understand groundwater water-salt migration processes in the context of land use change, while it is not well known in the oasis-desert region of arid inland basins. Here, to investigate the influences of land use change on groundwater hydrochemistry and suggest sustainable management, 67 water samples were obtained in the Luntai Oasis, a typical oasis desert of Central Asia. Stable isotopes and chemical components of samples were analyzed. Piper and Gibbs plots were used to elaborate the chemical type and major mechanisms controlling water chemistry, respectively. The results showed that cultivated land area has markedly expanded in the Luntai Oasis over the last 20 years (increasing by 121.8%). Groundwater seasonal dynamics and groundwater–surface water interaction were altered dramatically by farmland expansion and groundwater exploitation. Specifically, the spatial heterogeneity and seasonal variability of groundwater hydrochemistry were significant. Compared with the desert area, the δ18O and TDS of river water and shallow groundwater in the oasis cropland exhibited lower values but greater seasonal variation. Higher TDS was observed in autumn for river water, and in spring for shallow groundwater. The chemical evolution of phreatic water was mainly controlled by the evaporation-crystallization process and rock dominance, with a chemical type of Cl-SO4-Na-Mg. Significant spatiotemporal heterogeneity of groundwater hydrochemistry demonstrated the influence of climatic, hydrogeological, land use, and anthropogenic conditions. Groundwater overexploitation would cause phreatic water leakage into confined water, promoting groundwater quality deterioration due to fresh saltwater mixing. Improving agricultural drainage ditches in conjunction with restricting farmland expansion and groundwater extraction is an effective way to alleviate groundwater environment deterioration and maintain oasis-desert ecosystems in arid regions

    SLC31A1 Identifying a Novel Biomarker with Potential Prognostic and Immunotherapeutic Potential in Pan-Cancer

    No full text
    Solute carrier family 31 member 1 (SLC31A1) encodes a protein that functions as a homotrimer for the uptake of dietary copper. As a vital member of the cuproptosis gene family, it plays an essential role in both normal tissues and tumors. In this study, we analyzed SLC31A1 across human cancer types to gain a better understanding of SLC31A1’s role in cancer development. We searched for information using online databases to analyze, systematically and comprehensively, the role of SLC31A1 in tumors. Amongst nine cancer types, the expression of SLC31A1 was significantly different between tumors and normal tissues. According to further analysis, pancreatic cancer had the highest mutation rate of the SLC31A1 gene, and the methylation levels of the gene were significantly reduced in seven tumors. The expression of SLC31A1 is also linked to the infiltration of tumors by immune cells, the expression of immune checkpoint genes, and immunotherapy markers (TMB and MSI), suggesting that SLC31A1 may be of particular relevance in immunotherapy. This thorough analysis of SLC31A1 across different types of cancer gives us a clear and comprehensive insight into its role in causing cancer on a systemic level

    DataSheet_1_A novel therapeutic strategy of combined camrelizumab and apatinib for the treatment of advanced hepatocellular carcinoma.docx

    No full text
    Methods83 patients with hepatocellular carcinoma (HCC) admitted to the interventional oncology department were randomly divided into two groups. Apatinib and camrelizumab were administered to 42 patients in group A, whereas sorafenib was administered to 41 patients in group B for three months. The clinical efficacy was evaluated in terms of objective response rate (ORR), and disease control rate (DCR). Certain tumor markers like alpha-fetoprotein (AFP), carbohydrate antigen 199 (CA199), carcinoembryonic antigen (CEA), hypoxia-inducible factor (HIF-1), immune function T lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+) were determined before and after treatment. The serum levels of vascular endothelial growth factor (VEGF), osteopontin (OPN), aspartate aminotransferase (AST), and epidermal growth factor 7 (EGF7)] were observed. The survival time between the two groups was compared, such as progression-free survival (PFS) and median survival (MS). Finally, the toxicity and side effects data were also obtained.ResultsThe ORR and DCR of group A were 69.05% and 88.10%, respectively, which were significantly higher (P0.05). The serum level of VEGF, OPN, EGF-7 and AST indexes of group A&B were decreased significantly (P0.05).ConclusionIn treating HCC, combining apatinib and camrelizumab can reduce tumor markers, enhance the immune system and curative effect, and prolong patient survival. The underline mechanism is related to the down-regulation of VEGF, OPN and HIF-1 indexes.</p
    corecore