6 research outputs found

    Factors Limiting the Growth of Eucalyptus and the Characteristics of Growth and Water Use under Water and Fertilizer Management in the Dry Season of Leizhou Peninsula, China

    No full text
    The growth rate of eucalyptus in the dry season was significantly lower than that in the wet season. However, the limiting factors of eucalyptus growth in the dry season are not clear. In this paper, through the continuous monitoring of the diameter growth and environmental factors of 5.5-year-old Eucalyptus urophylla S. T. Blake × E. grandis W. Hill ex Maiden in the dry season, the diameter growth characteristics of eucalyptus during the dry season were studied and the limiting factors of eucalyptus growth in the dry season were determined. The water and fertilizer management activities in the dry season were evaluated to verify the growth and water use characteristics of Eucalyptus urophylla × E. grandis in the dry season under the conditions of mitigation limiting factors and provide the basis for further increasing the growth rate of eucalyptus. The results show that the diameter fluctuation of Eucalyptus urophylla × E. grandis is cyclical and the diameter cumulative growth during the dry season monitoring is consistent with the Gompertz model. Atmospheric temperature and soil water content are the main factors limiting the growth of Eucalyptus urophylla × E. grandis in the dry season. Irrigation and fertilization in the dry season can significantly increase the growth of diameter at breast height (DBH) and biomass growth and significantly improve the water use efficiency in the dry season

    Differences in Transpiration Characteristics among Eucalyptus Plantations of Three Species on the Leizhou Peninsula, Southern China

    No full text
    How much transpiration water consumption varies between eucalyptus species is unknown, making the suitability of a particular eucalyptus species for large-scale planting in a given area, or whether interspecific differences need to be taken into account for eucalyptus water consumption estimates, uncertain. Here, Eucalyptus camaldulensis Dehnh. (Ec), Eucalyptus pellita F. v. Muell. (Ep), the most resistant species, and Eucalyptus urophylla S.T. Blake × Eucalyptus grandis Hill ex Maiden (Eug), the most widely planted species, were monitored for sap flow. Their stand transpiration was also estimated and its relationship to various influencing factors analyzed for the same stand age and site, and predictive models for daily transpiration (T) developed. The results showed that the T of all eucalyptus species was jointly influenced by meteorological factors, soil water content (SWC), and leaf area index (LAI), with great variation in the T response to each influencing factor among species. Accordingly, we developed species-specific transpiration prediction models that could adequately explain the changed T of each species (R2-values: 0.863–0.911). There were significant differences in the stand daily mean sap flow density (JC) and transpiration among the three species. Although Ec had a significantly lower JC than Ep, it was significantly higher than Eug on all timescales, where the mean annual JC of Ep (0.11 cm min−1) was 1.4 and 2.6 times that of Ec (0.08 cm min−1) and Eug (0.042 cm min−1), respectively. Transpiration of Eug was significantly less than Ep, but significantly greater than Ec on all timescales, where the annual transpiration of Ep (743.41 mm) was 2.4 and 1.5 times that of Ec (311.52 mm) and Eug (493.58 mm), respectively. These results suggest that interspecific differences cannot be ignored when estimating transpiration rates in Chinese eucalyptus plantations, whose amount of water use should be considered when choosing the most optimal species to plant regionally

    Soil Enzyme Activity Differs among Native Species and Continuously Planted Eucalyptus Plantations

    No full text
    In recent years, monoculture and multi-rotation successional Eucalyptus plantations have given rise to several environmental issues, including the degradation of soil quality and nutrient imbalance, and the conversion of logging sites to multi-rotation Eucalyptus plantations has attracted considerable attention from the scientists involved. However, the effects of different management strategies on soil extracellular enzyme activities (EEAs) and enzyme stoichiometry (ES) in degraded Eucalyptus plantations are not clear. In this study, we investigated the responses and mechanisms of soil physicochemical properties, microbial biomass, carbon, and nitrogen- and phosphorus-acquiring enzyme activities, as well as the microbial resource requirements of Eucalyptus plantations, under different management strategies. The findings revealed that second-rotation (TWE) and third-rotation (THE) continuous plantings of pure Eucalyptus plantations resulted in significant decreases in soil organic carbon (SOC), total nitrogen (TN) and effective available phosphorus (AP) contents, while soil nutrient contents increased after the introduction of Manglietia glauca to form mixed forests (EM) with Eucalyptus or pure Manglietia glauca (M). Meanwhile, phosphorus-acquiring enzymes significantly increased with successive rotations of Eucalyptus (TWE and THE), while EEAC:P and EEAN:P gradually decreased and phosphorus limitation gradually increased compared to that of a native-species-mixed plantation (CK). After the introduction of Manglietia glauca (EM and M), phosphorus-acquiring enzyme activities showed lower levels and there were significant increases in EEAC:P and EEAN:P compared to those of continuous plantings of pure Eucalyptus plantations, which reduced microbial phosphorus demand. Moreover, soil nutrients played a more significant role in altering the EEAs and ES than did microbial biomass (0–10 cm: 72.7% > 53.3%, 10–20 cm: 54.5% > 32.6%). The results showed that EM and M improved soil fertility quality conditions and alleviated soil nutrient phosphorus limitations for soil microorganisms. Therefore, the introduction of Manglietia glauca, either to form mixed forests with Eucalyptus or in rotation with Eucalyptus, can be used as technical means for the conversion of multi-rotation successive Eucalyptus plantations

    The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity

    Get PDF
    AbstractSporisorium scitamineum is the causal agent of sugarcane smut, which is one of the most serious constraints to global sugarcane production. S. scitamineum and Ustilago maydis are two closely related smut fungi, that are predicted to harbor similar sexual mating processes/system. To elucidate the molecular basis of sexual mating in S. scitamineum, we identified and deleted the ortholog of mating-specific U. maydis locus b, in S. scitamineum. The resultant b-deletion mutant was defective in mating and pathogenicity in S. scitamineum. Furthermore, a functional b locus heterodimer could trigger filamentous growth without mating in S. scitamineum, and functionally replace the b locus in U. maydis in terms of triggering aerial filament production and forming solopathogenic strains, which do not require sexual mating prior to pathogenicity on the host plants
    corecore