55 research outputs found

    NHR-49/PAARα and HLH-30/TFEB cooperate for C. elegans host defense via a flavin-containing monooxygenase

    Get PDF
    During bacterial infection, the host is confronted with multiple overlapping signals that are integrated at the organismal level to produce defensive host responses. How multiple signals are sensed by the host and how they elicit the transcription of specific host defense genes is much less understood at the whole-animal level than at the cellular level. The model organism Caenorhabditis elegans is known to mount transcriptional defense responses against intestinal bacterial infections that elicit overlapping starvation and infection responses, but the specific regulation of such responses is not well understood. By directly comparing C. elegans that were either starved or infected with Gram-positive bacterium Staphylococcus aureus revealed a large infection-specific transcriptional signature. This signature was almost completely abrogated by deletion of transcription factor hlh-30/TFEB, except for six genes including a flavin-containing monooxygenase (FMO) gene, fmo-2/FMO5. We found that the mechanism of fmo-2/FMO5 induction required the nuclear hormone receptor, NHR-49/PPARa, which induced fmo-2/FMO5 and host defense cell non-autonomously. Moreover, deletion of fmo-2/FMO5 severely compromised infection survival, thus identifying the first FMO important for innate immunity in animals. These findings for the first time reveal an infection-specific host response to S. aureus, identify HLH-30/TFEB as its main regulator, reveal that NHR-49/PPARa contributes to host defense, and demonstrate that FMOs are important innate immunity effectors in animals

    Secondary Tuberculosis of Breast: Case Report

    Get PDF
    Tuberculosis of breast is a rare disease which is difficult to differentiate from carcinoma of breast. The involvement of breast can be primary or secondary to some focus in body. A case of secondary tuberculosis of right breast in a 21-year-old female from Kashmir, India, is being reported. Presentation was as a painless discharging sinus of right breast. A tubercular foci of rib was the affecting source of disease. No other evidence of tuberculosis was present in the body. Resection of involved rib segment, along with the discharging sinus, was performed. The patient had antitubercular therapy for 9 months, with no recurrence seen in followup

    Molecular Alterations and Expression Dynamics in the Etiopathogenesis of Thyroid Cancer

    Get PDF
    Thyroid carcinoma is the most prevalent endocrine malignancy and accounts for 2% of all human cancers. In the past decade, knowledge of genetic alterations of thyroid cancer (TC) has rapidly expanded, which has provided new insights into thyroid cancer etiology and has offered novel diagnostic tools and prognostic markers that enable improved and personalized management of thyroid cancer patients. Alterations in key signaling effectors seem to be the hallmark of distinct forms of thyroid neoplasia. Mutations or rearrangements in genes that encode Mitogen activated protein kinase (MAPK) pathway effectors seem to be required for transformation. Mutations in BRAF were the most recently identified MAPK effector in thyroid cancer. BRAF V600E is the most common alteration in sporadic papillary carcinoma. Three RAS proto-oncogenes (NRAS, HRAS & KRAS) are implicated in human thyroid tumorigenesis. High incidence of thyroid cancer worldwide indicates the importance of studying genetic alterations that lead to its carcinogenesis. BRAF and RAS alterations represent a novel indicator of the progression and aggressiveness of thyroid carcinogenesis. The GSα-adenylyl cyclase-cyclic AMP (cAMP) cascade is effected in thyroid cancer. Promoter hypermethylation of multiple genes especially TSHR has been identified to play a role in thyroid cancers, in particular showing a close association with BRAF mutational status. So, the main aim of the study was to elucidate the involvement of BRAF and RAS gene mutations along with BRAF expression and thyroid-stimulating hormone receptor (TSHR) hypermethylation in North Indian patients and investigate their association with clinicopathological characteristics

    A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output

    Get PDF
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output

    A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output [preprint]

    Get PDF
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires the precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output

    OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development

    Get PDF
    Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates

    D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

    Get PDF
    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior

    A Nutrition-Longevity Tradeoff Enforced by Innate Immunity

    No full text
    Dietary restriction (DR) extends lifespan in multiple animal species, but the underlying molecular mechanisms remain poorly understood. A recent study published in Cell Metabolism by Wu et al. (2019) shows that DR represses an evolutionarily conserved p38 MAPK pathway involved in innate immunity, leading to diminished expression of p38 MAPK-regulated genes and extended lifespan

    Nervous system control of intestinal host defense in C. elegans

    No full text
    Interplay between the nervous and immune systems is critical for homeostasis, and its dysfunction underlies pathologies such as multiple sclerosis, autism, leukemia, and inflammation. The nematode Caenorhabditis elegans provides an opportunity to define evolutionarily conserved mechanisms of regulation of host innate immunity and inflammation in a genetically tractable whole-animal system. In the past few years, the C. elegans nervous system has emerged as an integral part of host defense against pathogens, acting through diverse mechanisms to repress or induce protective transcriptional responses to infection in distal tissues. In this review, we discuss current knowledge of the mechanisms through which the C. elegans nervous system controls the expression of host defense genes in the intestinal epithelium. Although still incomplete, the insights derived from such work have broad implications for neural regulation of epithelial function at mucosal barriers in higher organisms in health and disease
    corecore