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Abstract: 

How neural circuits drive behavior is a central question in neuroscience. 

Proper execution of motor behavior requires the precise coordination of many 

neurons. Within a motor circuit, individual neurons tend to play discrete roles by 

promoting or suppressing motor output. How exactly neurons function in specific 

roles to fine tune motor output is not well understood. In C. elegans, the interneuron 

RIM plays important yet complex roles in locomotion behavior. Here, we show that 

RIM both promotes and suppresses distinct features of locomotion behavior to fine 

tune motor output. This dual function is achieved via the excitation and inhibition of 

the same motor circuit by electrical and chemical neurotransmission, respectively. 

Additionally, this bi-directional regulation contributes to motor adaptation in animals 

placed in novel environments. Our findings reveal that individual neurons within a 

neural circuit may act in opposing ways to regulate circuit dynamics to fine tune 

behavioral output. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.354472doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.354472
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction: 

Animals execute a wide range of behaviors, which rely on the vast number of 

neurons in the brain. Control of motor output is an essential feature of the nervous 

system in nearly all animals, and the successful execution of even the simplest 

motor behaviors requires the precise coordination of many individual neurons 

(Purves et al., 2008). For example, a simple withdrawal behavior in land snails 

involves different groups of neurons including sensory, motor, modulatory, and 

command neurons (Balaban, 2002). Individual neurons within circuits tend to play 

discrete roles in either promoting or suppressing motor output. For example in the 

mammalian motor cortex output circuit, distinct neurons release glutamate or GABA, 

to form a feedforward excitatory or inhibitory circuit, respectively, to regulate motor 

outputs (Cote et al., 2018). However, how individual neurons coordinate within a 

functional circuit to generate motor output is not well understood. 

C. elegans has emerged as a highly valuable model to investigate the 

mechanisms by which neural circuits control behavior. C. elegans possess a simple 

nervous system composed of 302 neurons, approximately 7000 chemical synapses, 

and 900 electrical junctions (White et al., 1986). These elements together generate a 

wide variety of behaviors, ranging from simple behaviors such as sensory detection 

and motor output to more complex behaviors including mating, sleep, drug-

dependency, and learning (de Bono and Maricq, 2005; Feng et al., 2006; Hart and 

Chao, 2010; Pierce-Shimomura et al., 2008). Furthermore, the connectome of C. 

elegans nervous system has been mapped in exquisite detail by electron microscopy 

reconstruction, although this only reveals structural but not functional connections. 

These features together make C. elegans an excellent model to investigate the 

neural and genetic mechanisms by which individual neurons function within a circuit 

to drive motor output.   

In order to navigate the environment, C. elegans locomotion is driven by 

undulations propagating from head to tail. Reorientation via backward locomotion, 

also called reversal, is a key behavioral strategy in animal navigation and avoidance 

of aversive stimuli (Gray et al., 2005; Hilliard et al., 2002; Piggott et al., 2011). 

Despite its simplicity, several elements of this motor program must be elaborately 

controlled to ensure it proper execution. This includes regulation of timing and 
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strength of the motor output, as well as the likelihood that the behavior is initiated in 

a specific instance, termed response probability. Many neurons are involved in 

reversal regulation, ranging from the most upstream sensory neurons down to motor 

neurons (Gray et al., 2005). Laser ablation studies showed that the interneurons 

AVA and AVE command reversal execution through the A-type motor neurons 

(Chalfie et al., 1985). This is further corroborated by calcium imaging studies 

revealing that the activities of AVA/AVE neurons are tightly coupled with reversals 

(Kato et al., 2015; Kawano et al., 2011; Piggott et al., 2011). The command 

interneurons AVA/AVE form a large number of connections with the first layer and 

second layer interneurons, which are thought to relay sensory information (White et 

al., 1986). While AVA/AVE command interneurons are essential drivers of 

reorientation during locomotion, less is understood regarding exactly how these 

neurons are regulated within the locomotion circuitry to control motor output.  

Among the second layer interneurons that connect with AVA/AVE, many 

reports implicate the pair of RIM interneurons as having an important role in reversal 

regulation. RIM neurons form both electrical and chemical synapses with AVA/AVE 

neurons. Laser ablation of RIM neurons has been reported to increase the frequency 

of reversals, suggesting an inhibitory role of RIM neurons in reversal regulation 

(Gray et al., 2005; Piggott et al., 2011). Interestingly, RIM-ablated worms also exhibit 

a reduction in reversal responses to anterior tactile stimulation or osmolarity insult, 

indicating a promotion role of RIM neurons in reversal regulation (Piggott et al., 

2011; Zheng et al., 1999). Furthermore, the calcium activity in RIM is coupled with 

reversals (Kato et al., 2015; Kawano et al., 2011). While these findings highlight the 

important role of RIM in regulating reversal behavior, they also reveal a critical 

knowledge gap in our understanding of how RIM functions in the locomotion circuitry 

to drive reversal behavior. 

In the present study, we investigated how RIM functions and coordinates with 

AVA/AVE command interneurons to form a functional circuit that properly controls 

reversal behavior. By combining optogenetics, laser ablation, calcium imaging and 

molecular genetics, we interrogated the complex roles of RIM in regulating distinct 

features of reversal behavior. We found that while RIM functions to promote reversal 

with AVA/AVE, it also suppresses reversal via AVA/AVE and A-type motor neurons. 

At the molecular level, RIM’s promotion of reversal behavior requires gap junctions 
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with AVA/AVE, while its suppression role relies on chemical neurotransmission with 

AVA/AVE and A-type motor neurons. At the circuit level, RIM can both promote and 

suppress AVA/AVE neuronal activities. Additionally, we uncovered that this bi-

directional regulation of neural circuits is involved not only in the simple reversal 

behavior, but also in more complex behaviors such as motor adaptation. Our work 

identifies circuit and molecular mechanisms by which individual neurons within a 

neural circuit both promote and suppress motor behavior to fine tune motor output. 
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Results: 

 

The pair of RIM interneurons promote reversal initiation while suppressing 

reversal probability 

C. elegans locomotion consists of forward crawling interrupted with reversals. 

Reversal allows worms to change locomotion direction, a key behavioral strategy in 

navigation and avoidance of aversive stimuli (Gray et al., 2005). Previous reports 

indicate a complex role of RIM neurons in the regulation of reversal behavior. To 

investigate the role of RIM neurons in this behavior, we adopted two behavioral 

assays. Specifically, we employed optogenetics to evoke reversals acutely to assay 

reversal initiation. To assay reversal probability, we recorded the frequency of 

spontaneous reversal events during worm locomotion. 

AVA and AVE neurons act as command interneurons for reversal behavior 

(Chalfie et al., 1985; Gray et al., 2005; Piggott et al., 2011). Indeed, acute activation 

of AVA neurons optogenetically with Chrimson, a red light-drivable channelrhodopsin 

(Klapoetke et al., 2014), triggered reversals immediately (Figure 1A-B), confirming 

the positive role of AVA neurons in reversal initiation. A similar phenomenon was 

observed with AVE neurons (Figure 1C-D). When AVA and AVE neurons were 

ablated, the reversal frequency was greatly reduced (Figure 1G), verifying a critical 

role of AVA/AVE in promoting reversal probability. Notably, in AVA/AVE-ablated 

worms, the length (head swings) of the residual reversal events was rather short 

(Figure 1H). These results support the notion that AVA and AVE neurons play a 

critical role in driving reversal behavior. 

RIM neurons form both gap junctions and chemical synapses with AVA and 

AVE neurons (White et al., 1986). To test if RIM neurons share roles similar to 

AVA/AVE neurons in reversal regulation, we conducted both optogenetic and laser 

ablation experiments. Similar to AVA/AVE neurons, optogenetic activation of RIM 

neurons using Chrimson rapidly triggered reversals (Figure 1E-F), confirming a role 

for RIM neurons in promoting reversal initiation (Guo et al., 2009; Zheng et al., 

1999). On the other hand, as reported previously (Gray et al., 2005; Piggott et al., 

2011), ablation of RIM resulted in an increase in reversal frequency, indicating a role 
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of RIM neurons in suppressing reversal probability (Figure 1I). Thus, RIM neurons 

appear to both promote and suppress reversal behavior.  

To further interrogate the function of AVA/AVE and RIM neurons in reversal 

regulation, we recorded the calcium activities of these neurons in freely-behaving 

worms with the genetic calcium indicator GCaMP6 (Chen et al., 2013), using an 

automated calcium imaging system. We observed that reversal events were tightly 

coupled with the rising phase of calcium spikes in AVA/AVE and RIM neurons, 

supporting the idea that both neurons contribute to reversal initiation (Figure S1A-B). 

Altogether, the above results support the notion that while the command 

interneurons AVA/AVE are important in promoting reversal, the interneuron RIM 

plays a more complex role by promoting reversal initiation and suppressing reversal 

probability.  

 

RIM neurons promote reversal initiation via gap junctions 

Having shown that RIM neurons possess roles in both the promotion of 

reversal initiation and suppression of reversal probability, we next asked how this 

dual-function is achieved at the circuit and molecular levels. The C. elegans wiring 

diagram reveals that RIM forms both chemical synapses and electrical gap junctions 

with AVA and AVE. As AVA/AVE are known to mediate reversal behavior (Chalfie et 

al., 1985; White et al., 1986), we sought to determine whether RIM promotes 

reversal initiation through these neurons. A short pulse of red light rapidly triggered a 

reversal in RIM::Chrimson worms (Figure 2A-B). However, when AVA and AVE 

neurons were removed by laser ablation, red light was no longer able to trigger 

reversals in RIM::Chrimson worms, although a decrease in forward speed was still 

observed (Figure 2A-B). These results suggest that the command interneurons 

AVA/AVE are required for RIM to promote reversal initiation. 

As RIM forms both chemical and electrical synapses with AVA and AVE 

neurons (Chalfie et al., 1985; White et al., 1986), we asked which type of synapses 

mediate the transmission between RIM and AVA/AVE. To test whether chemical 

synapses are required, we employed genetically coded toxins to block chemical 

synapses. Tetanus toxin (TeTx) specifically cleaves synaptobrevin to impair 

chemical neurotransmission (Pellizzari et al., 1999). We expressed TeTx as a 
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transgene in RIM using a RIM-specific promoter, and tested whether RIM::Chrimson-

triggered reversals were affected. Impairment of RIM chemical transmission with 

TeTx did not block RIM::Chrimson-triggered reversals (Figure 2C-D), suggesting that 

chemical synapses are not required for RIM neurons to promote reversal initiation 

through AVA/AVE neurons. 

We next examined whether electrical synapses play a role in RIM-triggered 

reversal initiation. Previous work reported that two innexin genes unc-7 and unc-9 

are expressed in RIM and AVA/AVE neurons (Altun et al., 2009; Bhattacharya et al., 

2019).  We found that another innexin gene, inx-1, was also highly expressed in 

these neurons (Figure S2).  To test whether these innexins mediate the transmission 

between RIM and AVA/AVE neurons, we activated RIM neurons in unc-7, unc-9 and 

inx-1 single or double mutant animals using Chrimson. None of the single gap 

junction mutants showed a defect in RIM::Chrimson-triggered reversals (Figure 2E-

F). However, unc-7; inx-1 and unc-9; inx-1 double mutants exhibited largely reduced 

responses (Figure 2E-F), suggesting that these innexins function in combination to 

mediate electrical transmission between RIM and AVA/AVE neurons. It should be 

noted that these double mutants displayed a more severe uncoordinated phenotype 

than unc-7 and unc-9 single mutants. To ensure that the reduced responses in 

innexin double mutants were not simply caused by uncoordinated movement, we 

optogenetically activated the downstream command neurons AVA in unc-7; inx-1 

double mutant worms. We observed that upon activation of AVA neurons, unc-7; inx-

1 worms were still able to execute reversals, albeit at a reduced speed and response 

rate (Figure S3A-B). Thus, these double mutants retained the ability to execute 

reversals, though they failed to do so upon activation of RIM. These results 

demonstrate that the gap junction genes inx-1, unc-7 and unc-9 contribute to RIM-

triggered reversal initiation.  We thus conclude that RIM promotes reversal initiation 

via AVA/AVE command interneurons through gap junctions. 

  

RIM neurons suppress reversal probability via chemical neurotransmission 

We next asked how RIM suppresses reversal probability. Previous findings 

indicate that loss of the first layer interneurons AIB and AIZ, the command 

interneurons AVA and AVE, and the A-type motor neurons decreases the reversal 
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frequency (Chalfie et al., 1985; Gray et al., 2005; Li et al., 2014). To test whether any 

of these neurons function downstream of RIM to mediate its suppression effect on 

reversal probability, we removed these neurons by laser ablation and tested if it 

eliminated the hyper-reversal phenotype caused by the loss of RIM neurons. 

Removal of AIB and AIZ neurons did not abolish the hyper-reversal phenotype in 

RIM-ablated animals, suggesting that AIB and AIZ neurons do not function 

downstream of RIM to suppress reversal probability (Figure S4A). In contrast, when 

the AVA/AVE or A-type motor (Amo) neurons were removed by laser ablation or 

functionally impaired by TeTx, the hyper-reversal phenotype in RIM-ablated worms 

was largely suppressed, suggesting that RIM suppresses reversal probability via the 

AVA/AVE-Amo circuit (Figure S4B-C).  

Having characterized the circuit mechanism by which RIM suppresses 

reversals, we next sought to identify the underlying molecular mechanisms. We 

again asked whether chemical synaptic transmissions were required. To address 

this, we specifically expressed TeTx in RIM neurons as a transgene to block their 

chemical transmission, and recorded the spontaneous reversal frequency. We found 

that blocking chemical transmission in RIM neurons increased reversal frequency, 

suggesting that RIM suppresses reversal probability via chemical transmission 

(Figure 3A).  

Chemical transmission in the nervous system is typically mediated by classic 

neurotransmitters and neuropeptides. RIM neurons release glutamate, tyramine and 

possibly neuropeptides (Alkema et al., 2005; Kim and Li, 2004; Serrano-Saiz et al., 

2013).  To test which of these is required for RIM’s suppression effect on reversal 

probability, we specifically knocked down the associated pathways in RIM with RNAi 

of the following genes: eat-4, which encodes a vesicle glutamate transporter (Lee et 

al., 1999); tdc-1 which encodes a tyrosine decarboxylase required for tyramine 

biogenesis (Alkema et al., 2005); and unc-31, which is required for neuropeptide 

release (Speese et al., 2007). No effect was observed in unc-31(RNAi) worms, 

suggesting that neuropeptide signaling may not play a major role in mediating the 

suppression effect of RIM on reversal probability (Figure 3B). By contrast, knocking 

down glutamate release from RIM markedly increased the reversal frequency, 

suggesting that glutamate release from RIM may suppress reversal probability 

(Figure 3B). A similar result was obtained with tdc-1 knock down, although the effect 
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was not as robust as that observed with eat-4 knockdown (Figure 3B). Tyramine is 

known to suppress reversal frequency via tyramine-gated chloride channels (Pirri et 

al., 2009).  However, how glutamatergic signaling suppresses reversal frequency is 

completely unknown. Given this and the fact that RNAi of eat-4 exhibited a more 

robust effect, we focused on characterizing the role of glutamate transmission in the 

suppression of reversal probability. 

To identify the glutamate receptor that acts downstream of RIM neurons to 

mediate the suppression of reversal probability, we examined various glutamate 

receptor mutants. We focused on glutamate-gated chloride channels as they are 

known to mediate inhibitory responses (Dent et al., 2000). Mutant worms lacking avr-

14, which encodes a glutamate-gated chloride channel (Dent et al., 2000), exhibited 

a hyper-reversal phenotype, similar to that detected in RIM-ablated and RIM::eat-

4(RNAi) worms (Figure 3C). In addition, we found that avr-14 was expressed in 

neurons including AVA/AVE and A-type motor neurons (Figure S4D). Furthermore, 

transgenic expression of wild-type avr-14 gene in AVA/AVE and A-type motor (Amo) 

neurons rescued the hyper-reversal phenotype in avr-14 mutant worms (Figure 3D). 

Moreover, blocking glutamate release specifically from RIM by RIM::eat-4(RNAi) 

abolished the rescue effect of the avr-14 transgene (Figure 3E). Taken together, 

these results suggest that the glutamate-gated chloride channel AVR-14 functions in 

the AVA/AVE-Amo circuit to mediate the suppression of reversal probability by RIM 

neurons.  

 

RIM both promotes and suppresses AVA/AVE activities  

Our results show that RIM neurons can both promote reversal initiation as 

well as suppresses reversal probability through interactions with the interneurons 

AVA/AVE. We next wondered how RIM regulates the activities of AVA/AVE neurons. 

To address this, we examined how RIM ablation affects the calcium activities in 

AVA/AVE neurons in freely-moving worms. In mock-ablated controls, the calcium 

spikes in AVA/AVE neurons were coupled with reversals, with reversals initiating 

upon calcium increase in AVA/AVE, and terminating once calcium traces peaked 

and began to drop (Figure 4A, Figure S5B, D). In RIM-ablated animals, we observed 

that the coupling between reversal events and calcium spikes as well as the kinetics 
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of calcium spikes were still preserved (Figure S5A-D). However, the amplitude of 

AVA/AVE calcium spikes was significantly reduced in RIM-ablated worms (Figure 

4A-C). These results suggest that RIM promotes AVA/AVE neuronal activities by 

increasing the amplitude of individual calcium spikes without changing their kinetics. 

This is further supported by the amplitude distribution pattern of individual calcium 

spikes (Figure S5A). Specifically, in RIM-ablated animals, the amplitude distribution 

pattern is left-shifted to a narrower window, indicating that the calcium spikes in 

AVA/AVE neurons became weaker in the absence of RIM neurons (Figure S5A). 

This calcium imaging result is consistent with the behavioral data in which we found 

the length of reversals (head swings) became shorter in RIM-ablated animals (Figure 

4E). On the other hand, the frequency of calcium spikes in AVA/AVE neurons was 

increased in RIM-ablated worms (Figure 4A and 4D), indicating that AVA/AVE 

neurons became more excitable in the absence of RIM. Thus, RIM appears to both 

promote and suppress AVA/AVE activities.  These findings also suggest that RIM 

promotes reversal initiation by potentiating the amplitude of calcium spikes in 

AVA/AVE neurons, but suppresses reversal probability by inhibiting the frequency of 

calcium spikes in these neurons, thereby providing a circuit mechanism underlying 

the dual-role of RIM in regulating reversal behavior. 

 

The dual-role of RIM neurons in motor adaptation  

Given our observations that RIM can bi-directionally promote and suppress 

reversal behavior, we next wondered whether this dual function of RIM contributes to 

reversal-related complex behaviors under more natural conditions. One possible 

application of this function could be to facilitate motor adaptation after food removal. 

In the presence of food, worms execute mostly short reversals (less than one head 

swing) (Figure 5B). Upon transfer to a no-food environment, the reversal length 

markedly increased to >3 head swings (Figure 5B). Furthermore, the total reversal 

strength (reversal head swings multiplied by reversal frequency) increased 

dramatically in the first minute following transfer to a no-food environment (Figure 

5C). Constantly maintaining such a high response is not beneficial to animals, as it 

would be energetically costly to sustain the behavior. Indeed, animals underwent fast 

motor adaptation following transfer to the no-food environment (Figure 5A-C). 
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Although the number of reversal head swings did not change over time in the no-

food environment (Figure 5B), the reversal frequency quickly decreased over time 

(Figure 5A), resulting in a rapid drop in the total reversal strength over the 15 minute 

time window (Figure 5C), indicating fast motor adaptation. This adaptive behavior, 

also called local search behavior (Gray et al., 2005), featured two prominent phases: 

upon transfer to the no-food environment, worms first exhibited a rapid increase in 

reversal strength, followed by a progressive decrease in reversal strength over time 

(Figure 5C).   

We then asked whether RIM neurons contribute to such motor adaptation. In 

RIM-ablated worms, the number of reversal head swings was decreased compared 

to controls following transfer to the no-food environment (Figure 5B), resulting in a 

significant decrease in total reversal strength in the initial phase (e.g. the first minute) 

of motor adaptation (Figure 5C and 5D). Despite this, as RIM-ablated worms 

displayed a much slower decline in the frequency of reversal events in the no-food 

environment (Figure 5A), the total reversal strength exceeded that observed in 

mock-ablated control worms in later phases of motor adaptation (e.g. >4 minute) 

(Figure 5C and 5E). The initial decrease in the reversal strength in RIM-ablated 

worms is consistent with RIM’s role in promoting reversal initiation, while the 

elevated reversal strength at later times is in line with RIM’s role in suppressing 

reversal probability. This biphasic defect in RIM-ablated worms supports the notion 

that RIM neurons both promote and suppress reversal behavior. Thus, RIM neurons 

contribute to motor adaptation in a new environment though their modulation of 

different features of reversal behavior. Taken together, our results provide a model in 

which RIM neurons function with AVA/AVE/A-type motor neurons to both promote 

and suppress the reversal circuit to fine tune motor output (Figure 5F). 
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Discussion: 

Previous studies reported seemingly conflicting results with respect to the role 

of RIM neurons in the locomotion circuitry, suggesting an intricate role of RIM 

neurons in regulating locomotion. In the current study, we find that RIM neurons can 

both promote and suppress reversals during locomotion within a single motor circuit 

and do so by regulating distinct features of the reversal behavior. RIM neurons 

promote the initiation of individual reversal events while suppressing reversal 

probability. This multi-feature regulation is separately conducted by electrical and 

chemical transmissions with the reversal command interneurons AVA/AVE. We 

show that RIM promotes reversal initiation by exciting AVA/AVE neurons via 

electrical synapses mediated by the innexins UNC-7, UNC-9, and INX-1. This 

electrical connectivity may also function to maintain response strength. However, 

following RIM activation, glutamate released from RIM may then inhibit AVA/AVE 

and A-type motor neurons in the reversal circuit synaptically and/or extrasynaptically 

by turning on the inhibitory glutamate-gated chloride channel AVR-14, leading to the 

suppression of reversal frequency with time (Figure 5F). Indeed, in RIM-ablated 

worms, AVA/AVE neurons display a decrease in the amplitude of calcium spikes 

while exhibiting an increase in the frequency of calcium spikes, indicating that RIM 

neurons can both promote and suppress AVA/AVE activities. These findings also 

suggest that RIM promotes reversal initiation by potentiating the amplitude of 

calcium spikes in AVA/AVE neurons, but suppresses reversal probability by inhibiting 

the frequency of calcium spikes in these neurons, thereby providing a circuit 

mechanism underlying the dual-role of RIM in regulating reversal behavior. 

Our data show that individual neurons in a neural circuit can regulate distinct 

features of a behavior by using either electrical or chemical transmission to 

communicate with other neurons in the circuit. Notably, these two modes of 

transmission are temporally distinct, as electrical transmission via gap junctions is 

rapid while chemical transmission occurs at a slower pace (Dong et al., 2018). This 

differential temporal pattern of information processing may explain why RIM initially 

promotes reversal initiation and subsequently supress reversal probability. Our 

findings suggest that the identified circuit is able to process temporal information to 

both promote and suppress motor output. Processing differential temporal patterns 

to fine tune circuit functions offers an excellent coding strategy for behavioral control. 
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In the locust, the dorsal uncrossed bundle (DUB) neurons and the lobula giant 

movement detector (LGMD) also form similar connections that process time-varying 

information (Wang et al., 2018), suggesting that similar mechanisms may operate in 

other species.  

Complex brain functions are traditionally believed to depend on a vast number 

of neurons (Herculano-Houzel, 2012). However, increasing evidence suggests that it 

may also rely on multiple functions of single neurons. This phenomenon has been 

observed in both invertebrate and vertebrate brains (Briggman and Kristan, 2008; Li 

et al., 2014; Rigotti et al., 2013). The observation that RIM regulates multiple 

features of reversal behavior and also contributes to motor adaptation in C. elegans 

indicates that this neuron is multi-functional. In addition to RIM neurons, many other 

neurons are also multi-functional in C. elegans. For example, AIY interneurons are 

multi-functional and can both regulate reversals and adjust locomotion speed (Li et 

al., 2014). The AIB interneuron pair can regulate both locomotion and feeding 

behaviour (Zou et al., 2018). A single pair of PVD sensory neurons are able to 

regulate proprioception as well as responses to harsh touch (Tao et al., 2019). SMD 

neurons are also multifunctional and play roles at multiple hierarchical levels such as 

fast head casting and omega turn behaviors (Kaplan et al., 2020). This growing body 

of evidence indicates that complex brain functions rely on not only the vast number 

of neurons, but also multiple functions of individual neurons. Importantly, in the C. 

elegans connectome, many neurons form similar connection patterns like the circuit 

described here, indicating that the temporal coding strategy adopted by RIM to relay 

distinct information within a circuit could be widely employed in neural network 

integration and behavioral control. 
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Methods 

 

Strains  

WT: N2.  TQ800: lite-1(xu7). TQ440: akIs3[Pnmr-1::gfp]. TQ3032: lite-1(xu7); 

xuEx1040[Pnmr-1::GCaMP3.0 + Pnmr-1::DsRed2b]. TQ6292: lite-1(xu7); 

xuEx2167[Pcex-1::GCaMP6f+Pgcy-13::sl2:mcherry]. TQ6744: lite-1(xu7); 

xuEx2257[Punc-4::tetx::sl2::yfp]. TQ6745: lite-1(xu7); xuEx2257[Punc-

4::tetx::sl2::yfp];  xuEx1932[pgcy-13::TeTx-sl2-YFP;pgcy-13::dsRed2b; pnlp-

12::dsRed2b]. TQ6875: xuEx1932[pgcy-13::TeTx-sl2-YFP;pgcy-13::dsRed2b; pnlp-

12::dsRed2b];xuIs219[Podr-2b(3a)::yfp+Punc-122d::gfp]. TQ7103: xuEx2595[Pgcy-

13::tdc-1 sense+antisense+Pgcy-13::DsRed]. TQ7119: xuEx1899[Punc-4::DsRed]; 

xuEx856[pBS-77::5'UTR + avr-14::sl2::yfp].  TQ7283: xuEx2693[Pgcy-

13::Chrimson::sl2::yfp]. TQ7313; xuEx2717[Pgcy-13::avr-

14(genomic+cDNA)::sl2::YFP];avr-14(1302). TQ7262: xuEx2675[Pnmr-1::avr-

14(genomic+cDNA)::sl2::yfp;avr-14(ad1302). TQ7264: xuEx2677[Pnpr-4::avr-

14(genomic+cDNA)::sl2::yfp; avr-14(ad1302). TQ7267: xuEx2680[Punc-4::avr-

14(genomic+cDNA)::sl2::yfp; avr-14(ad1302). TQ7269: xuEx2682[Pacr-5::avr-

14(genomic+cDNA)::sl2::yfp; avr-14(ad1302). TQ7271: xuEx2684[Pacr-2::avr-

14(genomic+cDNA)::sl2::yfp; avr-14(ad1302). TQ7274: xuEx2687[Plgc-55::avr-

14(genomic+cDNA)::sl2::yfp; avr-14(ad1302). TQ7280: xuEx2593[Pgcy-13::eat-4 

sense+antisense+Pgcy-13::DsRed]. TQ7281: avr-14(ad1302)I; xuEx2593[Pgcy-

13::eat-4 sense+antisense+Pgcy-13::DsRed]. TQ7324; xuEx2693[Pgcy-

13::Chrimson::sl2::YFP]; inx-1(tm3524). TQ7326: 

xuEx2693[ Pgcy13::chrimson::mcherry; unc-7(e5). TQ7325: 

xuEx2693[Pgcy13::chrimson::mcherry];unc-9(e101). TQ7327: xuEx2730[P gcy-

13::tetx;Punc-122::GFP]; xuEx2693[Pgcy-13::chrimsom::mcherry]. TQ7365: 

xuEx2765[Pnmr-1:: avr-14(genomic+cDNA)::sl2::yfp;Punc-4:: avr-

14(genomic+cDNA)::sl2::yfp]; avr-14(ad1302). TQ7332: xuEx2793[Pgcy-

13::tetx::YFP;Punc-122::GFP];xuEx1040[Pnmr-1::GCaMP3.0 + Pnmr-1::DsRed2b] . 

TQ7399:xuEx2795[Pnmr-1::avr-14::GFP;Punc-4::avr-14::gFP];xuEx2766[Pgcy-

13::eat-4 RNAi;Punc-122::GFP];;avr-14. TQ7340: xuEx2751[Pnpr-

4::chrimson::mcherry];xuEx2793[Pgcy-13::tetx ;Punc-122::GFP]. TQ7441: unc-

9(e101);inx-1(tm3524);xuEx2693[Pgcy-13::Chrimson::sl2::yfp]. TQ7348: 
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xuEx2751[Pnpr-4::chrimson::mcherry]. TQ7568: unc-7(e5);inx-1(tm3524); 

xuEx2693[Pgcy-13::chrimson::sl2::mcherry]. TQ7553: unc-7(e5);inx-

1(tm3524);xuEx2751[Pnpr-4::chrimson::sl2::mcherry]. TQ7710: xuEx2887[Pnmr-

1::sl2::mcherry2+Pinx-1L::sl2::YFP]. TQ7711: xuEx2888[Pnmr-

1::sl2::mcherry2]+xuEx856[pBS-77::5'UTR + avr-14::sl2::yfp]. TQ8002: 

xuEx2316[pgcy-13::tdc-1(s+as)+pgcy-13::dsRed2b+pnlp-12::dsRed2b]. TQ8003: 

xuEx2323[pgcy-13::eat-4RNAi+pgcy-13::sl2::CFP+pnlp-12::dsRed2b]. TQ8004: 

xuEx2320[pgcy-13::unc-31(s+as)+pgcy-13::sl2-CFP+pnlp-12::dsRed2b]. 

 

Laser ablation, optogenetics, and behavior  

Laser ablations were performed on L1 or L2 worms (Bargmann and Avery, 

1995). The transgene Pnmr-1::gfp was included in worms to help identify AVA, AVD, 

AVE and RIM. Control groups of animals underwent surgical preparation without 

laser irradiation. 

Optogenetic interrogation of reversal initiation was performed as previously 

described (Piggott et al., 2011). Briefly, worms were grown on NGM plates supplied 

with 5 μM all-trans-retinal. Day 1 adult worms were tested on retinal-free NGM plates 

spread with a thin layer of OP50 bacteria. Amber light (5 s pulse; 590nm; ~0.2 

mW/mm2) was delivered from a home-made LED light source to activate Chrimson 

to trigger behaviours. Animal behaviors were recorded and analyzed using the 

Wormlab system (MBF Bioscience). Each trial included five animals and at least five 

trials were performed for each group. Reversals were scored as positive responses if 

the animal stopped forward movement and initiated a reversal lasting at least half of 

one head swing upon light stimulation.  

Spontaneous reversal frequency was analyzed using an automated worm 

tracking system as described previously (Feng et al., 2006; Li et al., 2006; Piggott et 

al., 2011). Day 1 adult worms were transferred to no food NGM plates for tracking 

and reversal frequency was recorded for 10-16 min. 

 

Calcium imaging  

To elimiate intrinsic response to blue light that excites GCaMP (Liu et al., 

2010; Ward et al., 2008), strains used for calcium imaging carried a mutation in lite-1 

gene that encodes a light-sensing receptor (Gong et al., 2016). Calcium imaging was 
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performed on freely-behaving worms (Piggott et al., 2011). This system consists of 

an upright fluorescence stereomicroscope (Stemi SV11 M2 BIO), a dual-view 

beamsplitter, a X-Y motorized stage (Prior H101A) and an Andor EMCCD camera. 

The genetically-encoded calcium sensor GCaMPs (GCaMP 3.0 or GCaMP6f) were 

introduced into different neurons using neuron-specific promoters to observe calcium 

responses, and the red florescent protein DsRed was used as a reference channel 

for ratiometric imaging. A home-made software was used to coordinate the 

motorized stage and an Andor iXon EMCCD camera to track animal behaviours as 

well as capture GCaMP/DsRed signal. Day 1 adult worms were transferred to no 

food NGM plates for imaging. All experiments were conducted under the standard 

laboratory conditions (20°C, 30% humidity). Data processing was conducted using 

home-made software. GCaMP and DsRed ratio was calculated to indicate calcium 

responses.  
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Figure 1. RIM has a complex role in reversal regulation.

(A-B) Acute activation of AVA neurons using Chrimson triggers reversals. AVA was stimulated 

optogenetically by a Chrimson transgene under the npr-4 promoter. (A) Average velocity trace 

with SEM. n>=35. (B) Bar graph of reversal index quantification. Error bars: SEM. n≥7. 

***p=0.000106 (unpaired two-sided t-test). ATR: all-trans retinal, which is required for the 

function of Chrimson. The bar in amber denotes the time window of light illumination. 

(C-D) Acute activation of AVE neurons using Chrimson trigger reversals. AVE was stimulated 

optogenetically by a Chrimson transgene under the opt-3 promoter. (C) Average velocity trace 

with SEM. n>=25. (D) Bar graph of reversal index quantification. Error bars: SEM. n≥5. 

***p=1.18e-6 (unpaired two-sided t-test).

(E-F) Acute activation of RIM neurons using Chrimson triggers reversals. RIM was stimulated 

optogenetically by a Chrimson transgene under the gcy-13 promoter. (E) Average velocity 

trace with SEM. n>=30. F. Bar graph of reversal index quantification. Error bars: SEM. n≥6. 

***p=1.063e-7 (unpaired two-sided t-test).

(G-H) Ablation of AVA and AVE neurons reduces reversal frequency and reversal head swings. 

(G) Quantification of reversal frequency. Error bars: SEM. n≥8. ***p= 3.529e-6 (unpaired two-

sided t-test). Quantification of reversal headswings. (H) Error bars: SEM. n≥8. ***p=4.919e-7 

(unpaired two-sided t-test).

(I) Ablation of RIM neurons increases reversal frequency. Bar graph shows average reversal 

frequency. Error bars: SEM. n≥8. ***p=2.39e-5 (unpaired two-sided t-test).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.354472doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.354472
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

-250

-150

-50

50

150

0 10 20 30

V
e

lo
c
it
y
 (
m

m
/s

)

T(s)

R
e
s
p

o
n

s
e
 i
n
d

e
x
 (

%
)

R
e

s
p

o
n

s
e
 i
n

d
e

(/
%

)

ATR+
ATR-

-200

-100

0

100

200

0 10 20 30

T(s)

V
e

lo
c
it
y
 (
m

m
/s

)

Control; ATR+

Control; ATR-

AVA/AVE-; ATR+

AVA/AVE-; ATR-

RIM::Chrimson

R
e
s
p

o
n

s
e
 i
n
d

e
x
 (

%
)

V
e

lo
c
it
y
 (
m

m
/s

)

-200

-100

0

100

200

0 10 20 30

T(s)

WT; ATR+

WT; ATR-

RIM::TeTx; ATR+

RIM::TeTx; ATR-

RIM::Chrimson ATR+

ATR-

WT; ATR+

unc-7; ATR+

unc-9; ATR+

inx-1; ATR+

unc-9; inx-1; ATR+

unc-7; inx-1; ATR+

WT; ATR-

unc-7; ATR-

unc-9; ATR-

inx-1; ATR-

unc-9; inx-1; ATR-

unc-7; inx-1; ATR-

RIM::Chrimson

Fig 2

A B C D

E
F

ATR+

ATR-

N.D

**
**

**

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.354472doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.354472
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. RIM promotes reversals through command interneurons and gap junctions.

(A-B) Ablation of AVA/AVE neurons decreases RIM::Chrimson-triggered reversals. RIM was 
stimulated optogenetically with a Chrimson transgene under the gcy-13 promoter. (A) Traces 
shows average speed with SEM. n>=30.  ATR: all-trans retinal. The bar in amber denotes the 
time window of light illumination. (B) Reversal index quantification of (A). Error bars: SEM. n≥6. 
**p=1.095e-05 (ANOVA with Tukey’s HSD test). 

(C-D) Blockade of chemical transmission using Tetanus toxin (TeTx) in RIM does not change
RIM::Chrimson-triggered reversals. TeTx was expressed in RIM as a transgene using the gcy-
13 promoter. (C) Average velocity traces with SEM. n>=40. (D) Reversal index quantification of 
(C). Error bars: SEM. n≥8. p=0.7992 (ANOVA with Tukey’s HSD test).

(E-F) Gap junction mutants impair RIM::Chrimson-triggered reversals. (E) Average velocity 
traces with SEM. n>=40. (F) Reversal index quantification of (E). Error bars: SEM. n≥8. (unc-
7;inx-1, p=1.048e-05; unc-9;inx-1, p=1.048e-05 (ANOVA with Tukey’s HSD test)). 
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Figure 3. RIM suppresses reversal frequency by chemical transmission

(A) Blockage of RIM chemical transmission using Tetanus toxin (TeTx) in RIM increases 

reversal frequency. Bar graph shows quantification of reversal frequency. Error bars: SEM. 

n≥6. *** p=2.73e-05 (unpaired two-sided t-test).

(B) Knocking down glutamate and tyramine release by RNAi in RIM increases reversal 

frequency. RNAi was expressed as a transgene in RIM using the gcy-13 promoter. Bar graph 

shows quantification of reversal frequency. Error bars: SEM. n≥14. RIM::eat-4(RNAi), 

**p=1.171e-05. RIM::tdc-1(RNAi), **p=0.006846 (ANOVA with Tukey’s HSD test).

(C) Mutation in avr-14 but not other glutamate-gated chloride channel genes increases the 

reversal frequency. Bar graph shows quantification of reversal frequency. Error bars: SEM. 

n≥4. **p=0.0003544 (ANOVA with Tukey’s HSD test).

(D) Transgenic expression of wild-type avr-14 gene in AVA/AVE command interneurons and 

A-type motor neurons rescues the hyper-reversal defect of avr-14 mutant worms. Bar graph 

shows quantification of reversal frequency. Error bars: SEM. n≥14. **p=9.89e-06 between WT 

and avr-14; **p= 0.001245 between avr-14 and AVA::avr-14 rescue; *p= 0.01786 between 

avr-14 and DA/VA::avr-14 rescue; **p=1.324e-05 between avr-14 and 

AVA/AVD/AVE/RIM::avr-14 rescue; **p=9.887e-06 between avr-14 and DA/VA; 

AVA/AVD/AVE/RIM::avr-14 rescue (ANOVA with Tukey’s HSD test).

(E) Blockage of glutamate release from RIM by RIM::eat-4(RNAi) impairs the rescue of avr-

14 phenotype mediated by an avr-14 transgene expressed in in AVA/AVE and A-type motor 

neurons. Bar graph shows quantification of reversal frequency. Error bars: SEM. n≥10. 

**p=1.022e-05 between WT and avr-14; **p=1.018e-05 between WT and RIM::eat-4(RNAi). 

**p= 1.019e-05 between avr-14 and avr-14; AVA/AVE/DA/VA::avr-14. **p=1.018e-05 between 

avr-14; RIM::eat-4(RNAi); AVA/AVE/DA/VA ::avr-14 and avr-14; AVA/AVE/DA/VA::avr-14) 

(ANOVA with Tukey’s HSD test).

Promoters that drive avr-14 transgene expression are Pnpr-4: AVA neurons; Punc-4: DA, VA 

neurons; Pnmr-1: AVA, AVE, RIM and AVD; Pacr-5: DB, VB motor neurons; Plgc-55: AVB, 

SMD, RMD neurons; Pgcy-13: RIM neurons. 
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Figure 4. RIM fine tunes AVA/AVE activities.

(A) Calcium spikes in AVA/AVE neurons in freely-moving worms are tighly coupled 

with reversals. Calcium imaging was conducted with freely moving animals using the 

CARIBN system. Left panels: mock-ablated worms. Right panels: RIM-ablated 

worms. Upper panels: calcium traces. Lower panels: velocity traces. Amber bars 

label reversal events. The nmr-1 promoter was used to drive GCaMP3/DsRed

expression as a transgene in AVA and AVE neurons. As AVA and AVE neurons are in 

close proximity, the detected calcium fluorescence signals reflect the overall calcium 

activity in both neurons, though the calcium signals should be mainly contributed by 

AVA neurons due to the much stronger expression of GCaMP in AVA than AVE.    

(B-C) RIM ablation decreases the amplitude of calcium spikes in AVA/AVE neurons. 

(B) Average traces with SEM. Blue arrow marks the time point of reversal initiation. 

(C) Bar graph shows quantification of the amplitude of calcium spikes. Error bars: 

SEM. n≥150. *** p=5.24e-8 (unpaired two-sided t-test).

(D) RIM ablation increases the frequency of calcium spikes in AVA/AVE neurons. Bar 

graph shows quantification the frequency of calcium spikes. Error bars: SEM. n≥12. 

** p=0.005311 (unpaired two-sided t-test).

(E) Reversal length (head swings) is reduced in RIM ablated animals. Bar graph 

shows quantification of reversal head swings. Error bars: SEM. n≥8. ***p=2.39e-5 

(unpaired two-sided t-test).
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Figure 5. The dual role of RIM neurons in motor adaptation. 

Quantification of reversal properties in a motor adaptation assay. n=10. Control groups of 
animals underwent surgical preparation without laser irradiation.

(A) RIM ablation blocks the reversal frequency decline after worms were transferred to no-
food environment. Error bars: SEM. n=10. 

(B) RIM ablation decreases the reversal length after worms were transferred to no-food 
environment. SEM. n=10. 

(C) Ablation of RIM neurons impairs motor adaptation after worms were transferred to no-food 
environment. The reversal strength is the sum of the total reversal distance (reversal head 
swings) in each minute. Dash lines were the fitting curves for the reversal strength of control 
and RIM-ablated groups (fitted with exp function f(x)=y(0)+A*exp(-invTau*x). Control: 
y(0)=3.43, invTau=0.249, A=13.461; RIM-: y(0)=-0.07, invTau=0.042, A=10.467). SEM. n=10. 

(D) Ablation of RIM decreases the initial phase of the reversal strength (reversal strength of 
the 1st minute). Bar graph summarizes the 1st minute data in (C). **p=0.0066 (unpaired two-
sided t-test). 

(E) Ablation of RIM led to a slower decline in the reversal strength indicated by Tau value. 
***p=0.0006 (unpaired two-sided t-test). Tau values were derived from the fitting lines in (C).

(F) Schematic model. RIM neurons acutely promotes reversals by promoting AVA/AVE activity 
via gap junctions. RIM also chronically inhibits AVA/AVE-A type motor neurons via an 
inhibitory glutamate pathway, thereby suppressing reversal probability over time.
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Figure S1. Additional calcium imaging traces

(A-B) Sample calcium traces of AVA/AVE neurons (A) and RIM neurons (B) in freely-moving 

animals. Calcium imaging was conducted with freely moving animals using the CARIBN system. 

Upper panels are calcium ratio traces. Lower panels are the velocity traces. Amber bars labeled 

reversal events. Most of the calcium spikes in AVA/AVE and RIM neurons are tightly coupled 

with reversals. The nmr-1 promoter was used to express GCaMP3 transgene in AVA and AVE 

neurons, and the cex-1 promoter was used to express GCaMP6f transgene in RIM neurons.  
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A

Figure S2. Expression pattern of inx-1. Pnmr-1::mcherry transgene labels the 

interneurons AVA, AVD, AVE and RIM in the head region. Pinx-1::gfp labels all of these 

neurons and other head neurons. Pinx-1: 3.2 kb promoter including 70bp coding region.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.02.354472doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.354472
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

20

40

60

80

100

Fig S3

-30

-20

-10

0

10

0 10 20 30

V
e

lo
c
it
y
 (
m

m
/s

)

R
e
s
p

o
n

s
e
 i
n
d

e
x
 (

%
)

WT

ATR+

ATR-
AVA::Chrimson

unc-7; inx-1

A B

Figure S3. Activation of AVA neurons using optogenetics triggers reversals in unc-

7;inx-1 double mutant.

(A) Reversals can still be triggered by AVA::Chrimson transgene in unc-7;inx-1 mutants. 

Average traces. Bar in amber labels light stimulation segment. ATR: all-trans-retinal. 

(B) Bar graph shows reversal index quantification from (A). Error bars: SEM. n≥5. 

**p=5.525e-05 (ANOVA with Tukey’s HSD test). 
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Figure S4. RIM suppresses reversal through AVA/AVE and A-type motor neurons and

avr-14.

(A) Ablation of the AIB and AIZ neurons does not the hyper-reversal phenotype in RIM-

ablated worms. Bar graph shows quantification of reversal frequency. Error bars: SEM. n≥8. 

**p=1.252e-05 between control and RIM-, **p=0.002314 between control and AIB-AIZ-, 

*p=0.005383 between RIM- and AIB-AIZ-RIM-, **p=1.255e-05 (ANOVA with Tukey’s HSD 

test) between AIB-AIZ- and AIB-AIZ-RIM-.

(B) Ablation of the AVA and AVE neurons largely suppresses the hyper-reversal phenotype in 

RIM-ablated worms. Bar graph shows quantification of reversal frequency. Error bars: SEM. 

n≥7. **p= 1.267e-05 between control and AVA/AVE-, **p= 1.126e-05 between control and 

RIM-, p= 0.1046 (ANOVA with Tukey’s HSD test) between AVA/AVE- and AVA/AVE-;RIM-.

(C) Blocking the chemical transmission of A-type motor neurons using TeTx also suppresses 

the hyper-reversal phenotype in RIM-ablated worms. Bar graph shows quantification of 

reversal frequency. Error bars: SEM. n≥6. **p= 0.0005398 between control and DA/VA::Tetx, 

**p= 1.838e-05 between control and RIM-, p= 0.7303 (ANOVA with Tukey’s HSD test)

between DA/VA::TeTx and DA/VA::TeTx; RIM-. 

(D) Expression pattern of avr-14. Pnmr-1::mCherry labels AVA, AVD, AVE and RIM neurons, 

and Punc-4::DsRed labels A-type motor neurons. White arrows indicate the overlapping 

neurons (RIM, AVA, AVE and A type motor neurons). 
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Figure S5. RIM ablation does not alter the kinetics of calcium spike in AVA/AVE neurons.

(A) RIM ablation left-shifted the amplitude distribution pattern of calcium spikes in AVA/AVE 

neurons. Histograms are fitted with Gauss function. Only events with amplitude >0 are shown. 

Control: n=151; RIM-: n=264. 

(B-C) RIM ablation does not alter the rising slope of calcium spikes in AVA/AVE neurons. Arrow 

in (B) points to the time point of reversal initiation. (C) Normalized traces. 

(D-E) RIM ablation does not alter the dropping slope of calcium spikes in AVA/AVE neurons. 

Arrow in (D) points to the end of reversal (reversal termination). (E) Normalized traces. 
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